請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20280完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝銘鈞 | |
| dc.contributor.author | Jenny Ling-Yu Chen | en |
| dc.contributor.author | 陳苓諭 | zh_TW |
| dc.date.accessioned | 2021-06-08T02:44:00Z | - |
| dc.date.copyright | 2018-02-26 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-01-22 | |
| dc.identifier.citation | Aggarwal, S., Grange, C., Iampietro, C., Camussi, G. and Bussolati, B. (2016). 'Human CD133+ Renal Progenitor Cells Induce Erythropoietin Production and Limit Fibrosis After Acute Tubular Injury.' Sci Rep 6: 37270.
Ando, K., Ozaki, T., Yamamoto, H., Furuya, K., Hosoda, M., Hayashi, S., Fukuzawa, M. and Nakagawara, A. (2004). 'Polo-like kinase 1 (Plk1) inhibits p53 function by physical interaction and phosphorylation.' J Biol Chem 279(24): 25549-25561. Blazkova, I., Nguyen, H.V., Dostalova, S., Kopel, P., Stanisavljevic, M., Vaculovicova, M., Stiborova, M., Eckschlager, T., Kizek, R. and Adam, V. (2013). 'Apoferritin modified magnetic particles as doxorubicin carriers for anticancer drug delivery.' Int J Mol Sci 14(7): 13391-13402. Bogado, R.F., Pezuk, J.A., de Oliveira, H.F., Tone, L.G. and Brassesco, M.S. (2015). 'BI 6727 and GSK461364 suppress growth and radiosensitize osteosarcoma cells, but show limited cytotoxic effects when combined with conventional treatments.' Anticancer Drugs 26(1): 56-63. Boyer, J., McLean, E.G., Aroori, S., Wilson, P., McCulla, A., Carey, P.D., Longley, D.B. and Johnston, P.G. (2004). 'Characterization of p53 wild-type and null isogenic colorectal cancer cell lines resistant to 5-fluorouracil, oxaliplatin, and irinotecan.' Clin Cancer Res 10(6): 2158-2167. Chen, J.L., Chen, J.P., Huang, Y.S., Tsai, Y.C., Tsai, M.H., Jaw, F.S., Cheng, J.C., Kuo, S.H. and Shieh, M.J. (2016). 'Radiosensitization in esophageal squamous cell carcinoma: Effect of polo-like kinase 1 inhibition.' Strahlenther Onkol 192(4): 260-268. Chen, J.L., Tsai, Y.C., Tsai, M.H., Lee, S.Y., Wei, M.F., Kuo, S.H. and Shieh, M.J. (2017). 'Prominin-1-Specific Binding Peptide-Modified Apoferritin Nanoparticle Carrying Irinotecan as a Novel Radiosensitizer for Colorectal Cancer Stem-Like Cells.' Particle & Particle Systems Characterization 34(5): 1600424. Chithrani, D.B., Jelveh, S., Jalali, F., van Prooijen, M., Allen, C., Bristow, R.G., Hill, R.P. and Jaffray, D.A. (2010). 'Gold nanoparticles as radiation sensitizers in cancer therapy.' Radiat Res 173(6): 719-728. Chou, T.C. (2006). 'Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies.' Pharmacol Rev 58(3): 621-681. Cooper, J.S., Guo, M.D., Herskovic, A., Macdonald, J.S., Martenson, J.A., Jr., Al-Sarraf, M., Byhardt, R., Russell, A.H., Beitler, J.J., Spencer, S., Asbell, S.O., Graham, M.V. and Leichman, L.L. (1999). 'Chemoradiotherapy of locally advanced esophageal cancer: long-term follow-up of a prospective randomized trial (RTOG 85-01). Radiation Therapy Oncology Group.' Jama 281(17): 1623-1627. Coughlin, J., Masci, A., Gronke, R.S., Bergelson, S. and Co, C. (2016). 'A simple enzyme-substrate localized conjugation method to generate immobilized, functional glutathione S-transferase fusion protein columns for affinity enrichment.' Anal Biochem 505: 51-58. Dabkeviciene, D., Jonusiene, V., Zitkute, V., Zalyte, E., Grigaitis, P., Kirveliene, V. and Sasnauskiene, A. (2015). 'The role of interleukin-8 (CXCL8) and CXCR2 in acquired chemoresistance of human colorectal carcinoma cells HCT116.' Med Oncol 32(12): 258. Degenhardt, Y. and Lampkin, T. (2010). 'Targeting Polo-like kinase in cancer therapy.' Clin Cancer Res 16(2): 384-389. Demaria, S., Golden, E.B. and Formenti, S.C. (2015). 'Role of Local Radiation Therapy in Cancer Immunotherapy.' JAMA Oncol 1(9): 1325-1332. Dobrovolskaia, M.A. and McNeil, S.E. (2007). 'Immunological properties of engineered nanomaterials.' Nat Nanotechnol 2(8): 469-478. Dostalova, S., Cerna, T., Hynek, D., Koudelkova, Z., Vaculovic, T., Kopel, P., Hrabeta, J., Heger, Z., Vaculovicova, M., Eckschlager, T., Stiborova, M. and Adam, V. (2016). 'Site-Directed Conjugation of Antibodies to Apoferritin Nanocarrier for Targeted Drug Delivery to Prostate Cancer Cells.' ACS Appl Mater Interfaces 8(23): 14430-14441. Dovedi, S.J., Adlard, A.L., Lipowska-Bhalla, G., McKenna, C., Jones, S., Cheadle, E.J., Stratford, I.J., Poon, E., Morrow, M., Stewart, R., Jones, H., Wilkinson, R.W., Honeychurch, J. and Illidge, T.M. (2014). 'Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade.' Cancer Res 74(19): 5458-5468. Feng, L., Wu, H., Ma, P., Mumper, R.J. and Benhabbour, S.R. (2011). 'Development and optimization of oil-filled lipid nanoparticles containing docetaxel conjugates designed to control the drug release rate in vitro and in vivo.' Int J Nanomedicine 6: 2545-2556. Feng, Y.B., Lin, D.C., Shi, Z.Z., Wang, X.C., Shen, X.M., Zhang, Y., Du, X.L., Luo, M.L., Xu, X., Han, Y.L., Cai, Y., Zhang, Z.Q., Zhan, Q.M. and Wang, M.R. (2009). 'Overexpression of PLK1 is associated with poor survival by inhibiting apoptosis via enhancement of survivin level in esophageal squamous cell carcinoma.' Int J Cancer 124(3): 578-588. Gerster, K., Shi, W., Ng, B., Yue, S., Ito, E., Waldron, J., Gilbert, R. and Liu, F.F. (2010). 'Targeting polo-like kinase 1 enhances radiation efficacy for head-and-neck squamous cell carcinoma.' Int J Radiat Oncol Biol Phys 77(1): 253-260. Ghosh, S., Mohapatra, S., Thomas, A., Bhunia, D., Saha, A., Das, G., Jana, B. and Ghosh, S. (2016). 'Apoferritin-nanocage delivers combination of microtubule and nucleus targeting anticancer drugs.' ACS Appl Mater Interfaces. Gilmartin, A.G., Bleam, M.R., Richter, M.C., Erskine, S.G., Kruger, R.G., Madden, L., Hassler, D.F., Smith, G.K., Gontarek, R.R., Courtney, M.P., Sutton, D., Diamond, M.A., Jackson, J.R. and Laquerre, S.G. (2009). 'Distinct concentration-dependent effects of the polo-like kinase 1-specific inhibitor GSK461364A, including differential effect on apoptosis.' Cancer Res 69(17): 6969-6977. Gjertsen, B.T. and Schoffski, P. (2015). 'Discovery and development of the Polo-like kinase inhibitor volasertib in cancer therapy.' Leukemia 29(1): 11-19. Gligorov, J. and Lotz, J.P. (2004). 'Preclinical pharmacology of the taxanes: implications of the differences.' Oncologist 9 Suppl 2: 3-8. Golsteyn, R.M., Mundt, K.E., Fry, A.M. and Nigg, E.A. (1995). 'Cell cycle regulation of the activity and subcellular localization of Plk1, a human protein kinase implicated in mitotic spindle function.' J Cell Biol 129(6): 1617-1628. Gorski, D.H., Beckett, M.A., Jaskowiak, N.T., Calvin, D.P., Mauceri, H.J., Salloum, R.M., Seetharam, S., Koons, A., Hari, D.M., Kufe, D.W. and Weichselbaum, R.R. (1999). 'Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation.' Cancer Res 59(14): 3374-3378. Gradishar, W.J., Tjulandin, S., Davidson, N., Shaw, H., Desai, N., Bhar, P., Hawkins, M. and O'Shaughnessy, J. (2005). 'Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer.' J Clin Oncol 23(31): 7794-7803. Guan, R., Tapang, P., Leverson, J.D., Albert, D., Giranda, V.L. and Luo, Y. (2005). 'Small interfering RNA-mediated Polo-like kinase 1 depletion preferentially reduces the survival of p53-defective, oncogenic transformed cells and inhibits tumor growth in animals.' Cancer Res 65(7): 2698-2704. Guastalla, J.P., 3rd and Dieras, V. (2003). 'The taxanes: toxicity and quality of life considerations in advanced ovarian cancer.' Br J Cancer 89 Suppl 3: S16-22. Hainfeld, J.F., Dilmanian, F.A., Zhong, Z., Slatkin, D.N., Kalef-Ezra, J.A. and Smilowitz, H.M. (2010). 'Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma.' Phys Med Biol 55(11): 3045-3059. Harris, P.S., Venkataraman, S., Alimova, I., Birks, D.K., Donson, A.M., Knipstein, J., Dubuc, A., Taylor, M.D., Handler, M.H., Foreman, N.K. and Vibhakar, R. (2012). 'Polo-like kinase 1 (PLK1) inhibition suppresses cell growth and enhances radiation sensitivity in medulloblastoma cells.' BMC Cancer 12: 80. Heger, Z., Skalickova, S., Zitka, O., Adam, V. and Kizek, R. (2014). 'Apoferritin applications in nanomedicine.' Nanomedicine (Lond) 9(14): 2233-2245. Hofmann, C., Buttenschoen, K., Straeter, J., Henne-Bruns, D. and Kornmann, M. (2005). 'Pre-clinical evaluation of the activity of irinotecan as a basis for regional chemotherapy.' Anticancer Res 25(2a): 795-804. Jao, S.W., Chen, S.F., Lin, Y.S., Chang, Y.C., Lee, T.Y., Wu, C.C., Jin, J.S. and Nieh, S. (2012). 'Cytoplasmic CD133 expression is a reliable prognostic indicator of tumor regression after neoadjuvant concurrent chemoradiotherapy in patients with rectal cancer.' Ann Surg Oncol 19(11): 3432-3440. Ji, J., Wu, K., Wu, M. and Zhan, Q. (2010). 'p53 functional activation is independent of its genotype in five esophageal squamous cell carcinoma cell lines.' Front Med China 4(4): 412-418. Keith, B., Johnson, R.S. and Simon, M.C. (2011). 'HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression.' Nat Rev Cancer 12(1): 9-22. Kim, K.Y. (2007). 'Nanotechnology platforms and physiological challenges for cancer therapeutics.' Nanomedicine 3(2): 103-110. Kojima, M., Ishii, G., Atsumi, N., Nishizawa, Y., Saito, N. and Ochiai, A. (2010). 'CD133 expression in rectal cancer after preoperative chemoradiotherapy.' Cancer Sci 101(4): 906-912. Krause, M., Kummer, B., Deparade, A., Eicheler, W., Pfitzmann, D., Yaromina, A., Kunz-Schughart, L.A. and Baumann, M. (2013). 'Simultaneous PLK1 inhibition improves local tumour control after fractionated irradiation.' Radiother Oncol 108(3): 422-428. Lee, P.C., Chiou, Y.C., Wong, J.M., Peng, C.L. and Shieh, M.J. (2013). 'Targeting colorectal cancer cells with single-walled carbon nanotubes conjugated to anticancer agent SN-38 and EGFR antibody.' Biomaterials 34(34): 8756-8765. Lens, S.M., Voest, E.E. and Medema, R.H. (2010). 'Shared and separate functions of polo-like kinases and aurora kinases in cancer.' Nat Rev Cancer 10(12): 825-841. Li, L., Zhang, L. and Knez, M. (2016). 'Comparison of two endogenous delivery agents in cancer therapy: Exosomes and ferritin.' Pharmacol Res 110: 1-9. Li, X., Zhang, Y., Chen, H., Sun, J. and Feng, F. (2016). 'Protein Nanocages for Delivery and Release of Luminescent Ruthenium(II) Polypyridyl Complexes.' ACS Appl Mater Interfaces 8(35): 22756-22761. Liebmann, J., Cook, J.A., Fisher, J., Teague, D. and Mitchell, J.B. (1994). 'In vitro studies of Taxol as a radiation sensitizer in human tumor cells.' J Natl Cancer Inst 86(6): 441-446. Liu, X. and Erikson, R.L. (2002). 'Activation of Cdc2/cyclin B and inhibition of centrosome amplification in cells depleted of Plk1 by siRNA.' Proc Natl Acad Sci U S A 99(13): 8672-8676. Liu, Y., Mei, L., Yu, Q., Xu, C., Qiu, Y., Yang, Y., Shi, K., Zhang, Q., Gao, H., Zhang, Z. and He, Q. (2015). 'Multifunctional Tandem Peptide Modified Paclitaxel-Loaded Liposomes for the Treatment of Vasculogenic Mimicry and Cancer Stem Cells in Malignant Glioma.' ACS Appl Mater Interfaces 7(30): 16792-16801. Llamazares, S., Moreira, A., Tavares, A., Girdham, C., Spruce, B.A., Gonzalez, C., Karess, R.E., Glover, D.M. and Sunkel, C.E. (1991). 'polo encodes a protein kinase homolog required for mitosis in Drosophila.' Genes Dev 5(12a): 2153-2165. Lund-Andersen, C., Patzke, S., Nahse-Kumpf, V. and Syljuasen, R.G. (2014). 'PLK1-inhibition can cause radiosensitization or radioresistance dependent on the treatment schedule.' Radiother Oncol 110(2): 355-361. Marks, L.B. and Dewhirst, M. (1991). 'Accelerated repopulation: friend or foe? Exploiting changes in tumor growth characteristics to improve the 'efficiency' of radiotherapy.' Int J Radiat Oncol Biol Phys 21(5): 1377-1383. Misra, R., Acharya, S. and Sahoo, S.K. (2010). 'Cancer nanotechnology: application of nanotechnology in cancer therapy.' Drug Discov Today 15(19-20): 842-850. Modi, S. and Anderson, B.D. (2013). 'Determination of drug release kinetics from nanoparticles: overcoming pitfalls of the dynamic dialysis method.' Mol Pharm 10(8): 3076-3089. Ning, S.T., Lee, S.Y., Wei, M.F., Peng, C.L., Lin, S.Y., Tsai, M.H., Lee, P.C., Shih, Y.H., Lin, C.Y., Luo, T.Y. and Shieh, M.J. (2016). 'Targeting Colorectal Cancer Stem-Like Cells with Anti-CD133 Antibody-Conjugated SN-38 Nanoparticles.' ACS Appl Mater Interfaces 8(28): 17793-17804. Pavillard, V., Agostini, C., Richard, S., Charasson, V., Montaudon, D. and Robert, J. (2002). 'Determinants of the cytotoxicity of irinotecan in two human colorectal tumor cell lines.' Cancer Chemother Pharmacol 49(4): 329-335. Peng, C.L., Tsai, H.M., Yang, S.J., Luo, T.Y., Lin, C.F., Lin, W.J. and Shieh, M.J. (2011). 'Development of thermosensitive poly(n-isopropylacrylamide-co-((2-dimethylamino) ethyl methacrylate))-based nanoparticles for controlled drug release.' Nanotechnology 22(26): 265608. Rudolph, D., Steegmaier, M., Hoffmann, M., Grauert, M., Baum, A., Quant, J., Haslinger, C., Garin-Chesa, P. and Adolf, G.R. (2009). 'BI 6727, a Polo-like kinase inhibitor with improved pharmacokinetic profile and broad antitumor activity.' Clin Cancer Res 15(9): 3094-3102. Schmit, T.L., Zhong, W., Setaluri, V., Spiegelman, V.S. and Ahmad, N. (2009). 'Targeted depletion of Polo-like kinase (Plk) 1 through lentiviral shRNA or a small-molecule inhibitor causes mitotic catastrophe and induction of apoptosis in human melanoma cells.' J Invest Dermatol 129(12): 2843-2853. Schoffski, P., Awada, A., Dumez, H., Gil, T., Bartholomeus, S., Wolter, P., Taton, M., Fritsch, H., Glomb, P. and Munzert, G. (2012). 'A phase I, dose-escalation study of the novel Polo-like kinase inhibitor volasertib (BI 6727) in patients with advanced solid tumours.' Eur J Cancer 48(2): 179-186. Shih, Y.H., Peng, C.L., Lee, S.Y., Chiang, P.F., Yao, C.J., Lin, W.J., Luo, T.Y. and Shieh, M.J. (2015). '111In-cetuximab as a diagnostic agent by accessible epidermal growth factor (EGF) receptor targeting in human metastatic colorectal carcinoma.' Oncotarget 6(18): 16601-16610. Shmelkov, S.V., Butler, J.M., Hooper, A.T., Hormigo, A., Kushner, J., Milde, T., St Clair, R., Baljevic, M., White, I., Jin, D.K., Chadburn, A., Murphy, A.J., Valenzuela, D.M., Gale, N.W., Thurston, G., Yancopoulos, G.D., D'Angelica, M., Kemeny, N., Lyden, D. and Rafii, S. (2008). 'CD133 expression is not restricted to stem cells, and both CD133+ and CD133- metastatic colon cancer cells initiate tumors.' J Clin Invest 118(6): 2111-2120. Song, G., Cheng, L., Chao, Y., Yang, K. and Liu, Z. (2017). 'Emerging Nanotechnology and Advanced Materials for Cancer Radiation Therapy.' Adv Mater 29(32). Soni, D.V., Sramkoski, R.M., Lam, M., Stefan, T. and Jacobberger, J.W. (2008). 'Cyclin B1 is rate limiting but not essential for mitotic entry and progression in mammalian somatic cells.' Cell Cycle 7(9): 1285-1300. Sprenger, T., Conradi, L.C., Beissbarth, T., Ermert, H., Homayounfar, K., Middel, P., Ruschoff, J., Wolff, H.A., Schuler, P., Ghadimi, B.M., Rodel, C., Becker, H., Rodel, F. and Liersch, T. (2013). 'Enrichment of CD133-expressing cells in rectal cancers treated with preoperative radiochemotherapy is an independent marker for metastasis and survival.' Cancer 119(1): 26-35. Tandle, A.T., Kramp, T., Kil, W.J., Halthore, A., Gehlhaus, K., Shankavaram, U., Tofilon, P.J., Caplen, N.J. and Camphausen, K. (2013). 'Inhibition of polo-like kinase 1 in glioblastoma multiforme induces mitotic catastrophe and enhances radiosensitisation.' Eur J Cancer 49(14): 3020-3028. Tian, X., Lara, H., Wagner, K.T., Saripalli, S., Hyder, S.N., Foote, M., Sethi, M., Wang, E., Caster, J.M., Zhang, L. and Wang, A.Z. (2015). 'Improving DNA double-strand repair inhibitor KU55933 therapeutic index in cancer radiotherapy using nanoparticle drug delivery.' Nanoscale 7(47): 20211-20219. Trenz, K., Errico, A. and Costanzo, V. (2008). 'Plx1 is required for chromosomal DNA replication under stressful conditions.' Embo j 27(6): 876-885. Truffi, M., Fiandra, L., Sorrentino, L., Monieri, M., Corsi, F. and Mazzucchelli, S. (2016). 'Ferritin nanocages: A biological platform for drug delivery, imaging and theranostics in cancer.' Pharmacol Res 107: 57-65. van Vugt, M.A., Bras, A. and Medema, R.H. (2004). 'Polo-like kinase-1 controls recovery from a G2 DNA damage-induced arrest in mammalian cells.' Mol Cell 15(5): 799-811. Wei, M.F., Chen, M.W., Chen, K.C., Lou, P.J., Lin, S.Y., Hung, S.C., Hsiao, M., Yao, C.J. and Shieh, M.J. (2014). 'Autophagy promotes resistance to photodynamic therapy-induced apoptosis selectively in colorectal cancer stem-like cells.' Autophagy 10(7): 1179-1192. Wei, X., Luo, Q., Sun, L., Li, X., Zhu, H., Guan, P., Wu, M., Luo, K. and Gong, Q. (2016). 'Enzyme- and pH-Sensitive Branched Polymer-Doxorubicin Conjugate-Based Nanoscale Drug Delivery System for Cancer Therapy.' ACS Appl Mater Interfaces 8(18): 11765-11778. Werner, M.E., Copp, J.A., Karve, S., Cummings, N.D., Sukumar, R., Li, C., Napier, M.E., Chen, R.C., Cox, A.D. and Wang, A.Z. (2011). 'Folate-targeted polymeric nanoparticle formulation of docetaxel is an effective molecularly targeted radiosensitizer with efficacy dependent on the timing of radiotherapy.' ACS Nano 5(11): 8990-8998. Werner, M.E., Cummings, N.D., Sethi, M., Wang, E.C., Sukumar, R., Moore, D.T. and Wang, A.Z. (2013). 'Preclinical evaluation of Genexol-PM, a nanoparticle formulation of paclitaxel, as a novel radiosensitizer for the treatment of non-small cell lung cancer.' Int J Radiat Oncol Biol Phys 86(3): 463-468. Yim, H. (2013). 'Current clinical trials with polo-like kinase 1 inhibitors in solid tumors.' Anticancer Drugs 24(10): 999-1006. Yom, S.S. (2015). 'Accelerated repopulation as a cause of radiation treatment failure in non-small cell lung cancer: review of current data and future clinical strategies.' Semin Radiat Oncol 25(2): 93-99. Zeng, J., See, A.P., Phallen, J., Jackson, C.M., Belcaid, Z., Ruzevick, J., Durham, N., Meyer, C., Harris, T.J., Albesiano, E., Pradilla, G., Ford, E., Wong, J., Hammers, H.J., Mathios, D., Tyler, B., Brem, H., Tran, P.T., Pardoll, D., Drake, C.G. and Lim, M. (2013). 'Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas.' Int J Radiat Oncol Biol Phys 86(2): 343-349. Zhen, Z., Tang, W., Chen, H., Lin, X., Todd, T., Wang, G., Cowger, T., Chen, X. and Xie, J. (2013). 'RGD-modified apoferritin nanoparticles for efficient drug delivery to tumors.' ACS Nano 7(6): 4830-4837. Zhou, J.Y., Chen, M., Ma, L., Wang, X., Chen, Y.G. and Liu, S.L. (2016). 'Role of CD44(high)/CD133(high) HCT-116 cells in the tumorigenesis of colon cancer.' Oncotarget 7(7): 7657-7666. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20280 | - |
| dc.description.abstract | 放射治療在癌症治療的領域是非常重要的,約七成癌症病人需接受放射治療。大多數腫瘤都存在一定程度的放射抵抗性,即便在高科技發展下的現今,可以精密準確的給予放射能量,腫瘤復發的情況依舊存在。放射增敏機制有其臨床應用價值,並可為新藥研制開發提供理論基礎。放射增敏劑與放射治療結合,通過信號傳導、細胞週期調控、細胞凋亡、及血管生成因子等多種途徑影響放射增敏效應,提高放射治療的療效。奈米科技因有以下優點:透過高渗透長滯留效應以增加藥物溶解度、控制釋放、主動標靶癌細胞,將其應用在放射增敏劑是值得研究的主題。
在第一部分,我嘗試建立放射增敏劑研究之平台。Polo-like kinase (PLK) 在G2/M phase表現量最多,參與細胞分裂並維持細胞核完整性。抑制PLK是目前新穎熱門的抗癌治療,作為放射增敏劑之理論基礎為:處於G2/M phase的細胞對於放射線最敏感,而PLK 抑制劑也是主要作用於細胞M期,兩者同時給予應可達到很好的癌症治療效果。因此,我以高效PLK抑制劑 (Volasertib)為放射增敏劑,以台灣常見之食道鱗狀細胞癌為癌細胞株,以細胞實驗及動物模式探討兩者之協同效應。在第一部分的實驗結果證明抑制PLK確實可以提升放射治療之癌細胞毒殺能力,其機轉為破壞細胞週期,並在小鼠動物模式中得到應證,也確認了放射增敏劑研究平台之可行性。 在第二部分,我應用奈米科技製作出新一代的放射增敏劑,期望其可毒殺類癌幹细胞,達到更好的癌症治療效果。類癌幹细胞對放射治療存在抵抗性並使癌症復發。Prominin-1 (CD133)為類癌幹細胞之獨特表面分子標誌。因此,此新一代之放射增敏劑以Irinotecan為傳統之放射治療增敏劑,以去鐵蛋白為載體,並在其外表連接Prominin-1專一附著之胜肽鏈,使其具有靶向作用可主動標靶癌細胞,並能降低藥物對正常組織的副作用。在第二部分的實驗結果證明此新一代的放射增敏劑確實可以主動靶向至癌幹細胞,其放射治療增敏效果非常好,並也在小鼠動物模式中得到應證,展示了奈米科技可應用在放射增敏劑的證據。 在“展望”中我提到如何繼續這個研究主題,以及怎樣應用到臨床上。我希望這個研究的結果可以協助達成“放射增敏劑增進放射治療效果且不增加毒性”的目標。 | zh_TW |
| dc.description.abstract | Radiation therapy (XRT) is very important in the field of cancer treatment, and about 70% of cancer patients require XRT. Cancer cells often present with radioresistance; tumor recurrence occurs despite using advanced techniques and accurate targeting of radiation doses. Radiosensitizers have their unique clinical values, and provide a theoretical basis for the research and development of new drugs as well. Radiosensitizers improve the efficacy of XRT by modulating signal transduction, cell cycle progression, apoptosis, or expression of angiogenic factors. Nanotechnology offers the following advantages: increased solubility through enhanced permeability and retention effect, controlled release, and targeted delivery. Thus, studies on the application of radiosensitizers are needed for the development of improved treatment methods.
First, I have attempted to build a platform to study the radiosensitizers. Polo-like kinase (PLK) is mainly expressed in the G2/M phase, participating in mitosis and maintaining nuclear integrity. PLK inhibition is considered a novel anticancer treatment. The theory of using a PLK inhibitor as a radiosensitizer is as follows: cells in the G2/M phase are the most sensitive to radiation, and PLK inhibitors mainly act during the M phase; combining both factors may lead to increased tumoricidal effects. I used a highly potent PLK1 inhibitor (volasertib) as a radiosensitizer in an esophageal squamous cell carcinoma cell line. The synergistic combined effect of XRT and PLK inhibition was studied in vitro and in vivo. I first demonstrated that inhibition of PLK can indeed enhance the effects of XRT by a mechanism involving significant cell cycle interruption. In vivo studies also showed that PLK1 inhibition with volasertib during irradiation significantly improved local tumor control. The first part of the study also confirmed the feasibility of using the radiosensitizer research platform. In the second part, I applied nanotechnology to produce a new generation of radiosensitizers targeting cancer stem-like cells to improve the tumoricidal effects of the combination therapy. The resistance of cancer stem cells to XRT remains a major obstacle to successful cancer management. Prominin-1 is a marker of cancer stem-like cells. This new-generation radiosensitizer, developed using the traditional radiosensitizer, irinotecan, was biocompatible with apoferritin as the nanocarrier and actively targeted cancer stem-like cells through surface-modified CD133-specific ligands. The second part of the study showed that this new-generation radiosensitizer actively targeted cancer stem-like cells. Excellent synergistic radiosensitizing effects were observed in vitro and in vivo. Thus, nanotechnology can be applied to radiosensitizers. In the Prospect, I mainly described how to continue the current projects and apply the data in clinical use. The results of this study would help in meeting the requirement of enhancing the efficacy of XRT, with low toxicity, in cancer treatment. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T02:44:00Z (GMT). No. of bitstreams: 1 ntu-107-D03548001-1.pdf: 2822314 bytes, checksum: 3b5e43e6d44384ae8910c50967f6c44e (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書……………………………………………………………... i
誌謝……………………………………………………………………………… ii 中文摘要………………………………………...………………………………. iii 英文摘要………………………………………...……………………….……… v 縮寫對照表……………………………………………………………….……... vii Chapter One: Introduction 1 1.1 Radiosensitization Effects 1 1.2 Radiosensitization by Polo-Like Kinase 1 Inhibition 2 1.3 Cancer Stem-like Cells 2 1.4 Radiosensitization by Nanoparticles 3 Chapter Two: Radiosensitization by Volasertib Targeting Polo-Like Kinase 1 in Squamous Cell Carcinoma 5 2.1 Rationale and Approach 5 2.2 Materials and Methods 5 2.3 Results 10 Chapter Three: Radiosensitization by Nanoparticle Targeting Prominin-1 in Cancer Stem-like Cell 18 3.1 Rationale and Approach 18 3.2 Materials and Methods 18 3.3 Results 24 Chapter Four: Discussion 36 4.1 Radiosensitization by Targeting Polo-Like Kinase 1 36 4.2 Radiosensitization by Nanoparticle Targeting Prominin-1 39 Chapter Five: Prospect 43 5.1 Radiosensitizing Activity and Microenvironment 43 5.2 Clinical Application 44 References 45 Appendix 55 | |
| dc.language.iso | en | |
| dc.title | 放射增敏劑於癌症放射治療之應用 | zh_TW |
| dc.title | Radiosensitizer in Cancer Radiation Therapy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 林文澧,張富雄,鄭兆?,賴秉杉,駱俊良 | |
| dc.subject.keyword | 放射增敏劑,放射治療,奈米藥物,PLK 抑制劑,類癌幹?胞, | zh_TW |
| dc.subject.keyword | Radiosensitizer,Radiation therapy,Nanoparticle,Polo-like kinase inhibitor,Cancer stem-like cell, | en |
| dc.relation.page | 56 | |
| dc.identifier.doi | 10.6342/NTU201800095 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2018-01-22 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 2.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
