請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20203
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 盧子彬 | |
dc.contributor.author | Jia-Ying Su | en |
dc.contributor.author | 蘇家瑩 | zh_TW |
dc.date.accessioned | 2021-06-08T02:42:09Z | - |
dc.date.copyright | 2018-03-29 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-02-06 | |
dc.identifier.citation | 1. Ferlay J, Soerjomataram I, Dikshit R, et al: Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:E359-86, 2015 2. Bender E: Epidemiology: The dominant malignancy. Nature 513:S2-3, 2014 3. Samet JM, Wiggins CL, Humble CG, et al: Cigarette smoking and lung cancer in New Mexico. Am Rev Respir Dis 137:1110-3, 1988 4. Samet JM: Health benefits of smoking cessation. Clin Chest Med 12:669-79, 1991 5. Sun S, Schiller JH, Gazdar AF: Lung cancer in never smokers--a different disease. Nat Rev Cancer 7:778-90, 2007 6. Subramanian J, Govindan R: Lung cancer in never smokers: a review. J Clin Oncol 25:561-70, 2007 7. Toh CK, Gao F, Lim WT, et al: Never-smokers with lung cancer: epidemiologic evidence of a distinct disease entity. J Clin Oncol 24:2245-51, 2006 8. Kawaguchi T, Takada M, Kubo A, et al: Gender, histology, and time of diagnosis are important factors for prognosis: analysis of 1499 never-smokers with advanced non-small cell lung cancer in Japan. J Thorac Oncol 5:1011-7, 2010 9. 衛生福利部國民健康署: 2012年癌症登記報告, 衛生福利部國民健康署, 2015 10. Chan BA, Hughes BG: Targeted therapy for non-small cell lung cancer: current standards and the promise of the future. Translational lung cancer research 4:36, 2015 11. Derman BA, Mileham KF, Bonomi PD, et al: Treatment of advanced squamous cell carcinoma of the lung: a review. Translational lung cancer research 4:524, 2015 12. Liao RG, Watanabe H, Meyerson M, et al: Targeted therapy for squamous cell lung cancer. Lung Cancer 1:293-300, 2012 13. Russo GL, Proto C, Garassino MC: Afatinib in the treatment of squamous non-small cell lung cancer: a new frontier or an old mistake? Translational lung cancer research 5:110, 2016 14. Dutu T, Michiels S, Fouret P, et al: Differential expression of biomarkers in lung adenocarcinoma: a comparative study between smokers and never-smokers. Ann Oncol 16:1906-14, 2005 15. Kern JA, Schwartz DA, Nordberg JE, et al: p185neu expression in human lung adenocarcinomas predicts shortened survival. Cancer Res 50:5184-7, 1990 16. MacKinnon DP: Introduction to statistical mediation analysis, Routledge, 2008 17. Baron RM, Kenny DA: The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of personality and social psychology 51:1173, 1986 18. Robins JM, Greenland S: Identifiability and exchangeability for direct and indirect effects. Epidemiology 3:143-55, 1992 19. Pearl J: Direct and indirect effects, Proceedings of the seventeenth conference on uncertainty in artificial intelligence, Morgan Kaufmann Publishers Inc., 2001, pp 411-420 20. VanderWeele TJ, Vansteelandt S: Conceptual issues concerning mediation, interventions and composition. Statistics and its Interface 2:457-468, 2009 21. VanderWeele TJ, Vansteelandt S: Odds ratios for mediation analysis for a dichotomous outcome. American journal of epidemiology 172:1339-1348, 2010 22. VanderWeele TJ: Causal mediation analysis with survival data. Epidemiology (Cambridge, Mass.) 22:582, 2011 23. Imai K, Keele L, Tingley D: A general approach to causal mediation analysis. Psychological methods 15:309, 2010 24. Lange T, Hansen JV: Direct and indirect effects in a survival context. Epidemiology 22:575-581, 2011 25. Vansteelandt S, Bekaert M, Lange T: Imputation strategies for the estimation of natural direct and indirect effects. Epidemiologic Methods 1:131-158, 2012 26. Hung RJ, McKay JD, Gaborieau V, et al: A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature 452:633-7, 2008 27. Amos CI, Wu XF, Broderick P, et al: Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nature Genetics 40:616-622, 2008 28. Thorgeirsson TE, Geller F, Sulem P, et al: A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature 452:638-U9, 2008 29. Saccone SF, Hinrichs AL, Saccone NL, et al: Cholinergic nicotinic receptor genes implicated in a nicotine dependence association study targeting 348 candidate genes with 3713 SNPs. Hum Mol Genet 16:36-49, 2007 30. Spitz MR, Amos CI, Dong Q, et al: The CHRNA5-A3 region on chromosome 15q24-25.1 is a risk factor both for nicotine dependence and for lung cancer. J Natl Cancer Inst 100:1552-6, 2008 31. Liu JZ, Tozzi F, Waterworth DM, et al: Meta-analysis and imputation refines the association of 15q25 with smoking quantity. Nat Genet 42:436-40, 2010 32. Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nat Genet 42:441-7, 2010 33. VanderWeele TJ, Asomaning K, Tchetgen Tchetgen EJ, et al: Genetic variants on 15q25.1, smoking, and lung cancer: an assessment of mediation and interaction. Am J Epidemiol 175:1013-20, 2012 34. Storey JD, Tibshirani R: Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 100:9440-5, 2003 35. Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the royal statistical society. Series B (Methodological):289-300, 1995 36. Tomczak K, Czerwinska P, Wiznerowicz M: The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Pozn) 19:A68-77, 2015 37. Cancer Genome Atlas Research N, Weinstein JN, Collisson EA, et al: The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet 45:1113-20, 2013 38. Barrett T, Edgar R: Gene expression omnibus: microarray data storage, submission, retrieval, and analysis. Methods Enzymol 411:352-69, 2006 39. Pachter L: Models for transcript quantification from RNA-Seq. arXiv preprint arXiv:1104.3889, 2011 40. Wagner GP, Kin K, Lynch VJ: Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci 131:281-5, 2012 41. Li C, Hung Wong W: Model-based analysis of oligonucleotide arrays: model validation, design issues and standard error application. Genome Biol 2:RESEARCH0032, 2001 42. Gautier L, Cope L, Bolstad BM, et al: affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20:307-315, 2004 43. VanderWeele TJ: A three-way decomposition of a total effect into direct, indirect, and interactive effects. Epidemiology 24:224-32, 2013 44. Albert JM: Mediation analysis for nonlinear models with confounding. Epidemiology (Cambridge, Mass.) 23:879, 2012 45. Steen J, Loeys T, Moerkerke B, et al: Medflex: An R Package for Flexible Mediation Analysis using Natural Effect Models. Journal of Statistical Software 76, 2017 46. Dabney A, Storey JD, Warnes G: qvalue: Q-value estimation for false discovery rate control. R package version 1, 2010 47. VanderWeele TJ: Bias formulas for sensitivity analysis for direct and indirect effects. Epidemiology 21:540-51, 2010 48. Fritz MS, Mackinnon DP: Required sample size to detect the mediated effect. Psychol Sci 18:233-9, 2007 49. Wilkerson MD, Schallheim JM, Hayes DN, et al: Prediction of lung cancer histological types by RT-qPCR gene expression in FFPE specimens. The Journal of Molecular Diagnostics 15:485-497, 2013 50. Zhan C, Yan L, Wang L, et al: Identification of immunohistochemical markers for distinguishing lung adenocarcinoma from squamous cell carcinoma. Journal of thoracic disease 7:1398, 2015 51. Bhalla S, Chaudhary K, Kumar R, et al: Gene expression-based biomarkers for discriminating early and late stage of clear cell renal cancer. Scientific Reports 7, 2017 52. Lee K, Pausova Z: Cigarette smoking and DNA methylation. Frontiers in Genetics 4, 2013 53. Nakayama K, Qi J, Ronai Ze: The ubiquitin ligase Siah2 and the hypoxia response. Molecular Cancer Research 7:443-451, 2009 54. Snoek BC, de Wilt LH, Jansen G, et al: Role of E3 ubiquitin ligases in lung cancer. World journal of clinical oncology 4:58, 2013 55. Calzado MA, De La Vega L, Möller A, et al: An inducible autoregulatory loop between HIPK2 and Siah2 at the apex of the hypoxic response. Nature cell biology 11:85-91, 2009 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20203 | - |
dc.description.abstract | 背景:肺癌的常見亞型有鱗狀細胞癌、腺癌、小細胞癌及大細胞癌,許多研究發現在從未抽菸者與抽菸者的兩族群中,肺癌型態分布有很明顯的差異,抽菸者與從未抽菸者間基因的表達差異與突變也被某些研究發現有相異之處,然而,問題在於這些被找到的基因是否參與在因果途徑(causal pathway)中,抑或僅是抽菸習慣伴隨的附帶現象,本論文的目的即是找到抽菸行為導致肺癌亞型不同的因果基因途徑。
材料與方法:我們利用美國癌症基因圖譜計畫(The Cancer Genome Atlas,簡稱TCGA)的資料進行插補法中介效應分析探討可能與抽菸型態及肺癌亞型有關的失調基因,利用肺癌型態為依變項,抽菸狀態為自變項的羅吉斯迴歸作為反事實(counterfactual)資料的插補模型,並納入年齡、性別、種族與腫瘤分期作為共變量,抽菸狀態為暴露,基因表現量為中介因子,肺癌亞型為結果,為了計算族群平均效應(population-average effect) , 我們使用了倒數機率權重(Inverse probability weighting),並以偏誤加速校正之靴拔法(bias-corrected and accelerated bootstrap)計算效應之信賴區間,本分析使用軟體R 內的套件”medflex”,所有模型假設並無未測量的干擾因子,為驗證結果,亦從Gene Expression Omnibus(GEO)下載驗證資料集:GSE41271、GSE50081 及GSE81089。 結果:我們找到五個自然間接效應(natural indirect effect)在三組皆有顯著(p <0.05)的基因SIAH2、ABCC5、ABCF3、SKP2 以及MAP6D1,其自然間接效應的勝算比與信賴區間分別為2.94(95%信賴區間:2.07-4.17)、2.46(95%信賴區間:1.74-3.49)、2.44(95%信賴區間:1.74-3.42)、2.27(95%信賴區間:1.65-3.11)、2.18(95%信賴區間:1.64-2.90),進一步探討多中介因子的間接效應發現,在所有可能的中介因子組合中,SIAH2、ABCC5、SKP2 及MAP6D1 四個基因的間接效應最大,其自然間接效應的勝算比為2.94(95%信賴區間:1.66 - 5.06),敏感度分析說明未觀察到的干擾因子效應需要非常強才會使SIAH2、ABCC5、SKP2 及MAP6D1 四個基因之真實自然間接效應為零(null)或與本論文所得之估計值方向相反。 結論:SIAH2、ABCC5、ABCF3、SKP2 以及MAP6D1 可能是抽菸導致肺癌亞型不同的關鍵基因,其可能的生物機轉有待未來實驗去驗證與釐清。 | zh_TW |
dc.description.abstract | Introduction:The most common morphological types of lung cancers are squamous cell carcinoma, adenocarcinoma, small cell undifferentiated carcinoma, and large cell undifferentiated carcinoma. Differences have been observed in the expression patterns and mutations for genes when never-smokers are compared to smokers. However, the key question is whether these identified genes involved in the causal pathway, or whether they were simply epiphenomena of smoking habits. The aim of this study is to identify the causal pathway between tobacco smoking and the types of lung cancer.
Materials and methods:We performed imputation based mediation analysis to identify dysregulated genes associated with tobacco smoking and lung cancer subtypes by using the datasets from The Cancer Genome Atlas (TCGA). Logistic regression model which lung cancer type as outcome regressed on smoking status was used to impute for counterfactual data. Covariates included in the models are age, sex, and cancer stage. For population-average mediation effect, we use inverse probability weighting method. Mediation analyses was conducted using the “medflex” package in R with smoking as the “exposure”, gene expression as the “mediator”, and lung cancer type as the “outcome”. bias-corrected and accelerated (BCa) bootstrap were then used to model the indirect association between smoking status and lung cancer subtype through changes in gene expression. The models assumed no unmeasured confounding. To validate the findings, two additional datasets from Gene Expression Omnibus (GEO): GSE41271, GSE50081, and GSE81089 were analyzed. Results:We found five genes including SIAH2, ABCC5, ABCF3, SKP2, and MAP6D1 that had significant (p <0.05) natural indirect effect in three datasets. The odds ratios for natural indirect effect are 2.94(95% confidence interval: 2.07-4.17), 2.46(95% confidence interval: 1.74-3.49), 2.44(95% confidence interval: 1.74-3.43), 2.27(95% confidenceinterval: 1.65-3.11), and 2.18(95% confidence interval: 1.64-2.90), respectively. By performing multiple-mediators mediation analysis, we found the combination of SIAH2, ABCC5, SKP2, and MAP6D1 had the largest indirect effect which was 2.94 odds ratio (95% CI:1.66 - 5.06). The sensitivity analysis for the indirect effect of the combination of SIAH2, ABCC5, SKP2, and MAP6D1 shows that the effects of the unmeasured confounders need to be very strong.to make the point estimate be null or in the opposite direction. Conclusion:In conclusion, SIAH2, ABCC5, ABCF3, SKP2 and MAP6D1 may be the key genes involving in the pathway that the effect of smoking on lung cancer type. Further biological mechanisms have to be validated in the future. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T02:42:09Z (GMT). No. of bitstreams: 1 ntu-107-R04849025-1.pdf: 8905002 bytes, checksum: 7dedd3d6841bc2871221875152c37962 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 口試委員會審定書 i 致謝 ii 摘要 iii ABSTRACT iv 內容綱要 vi 圖目錄 viii 表目錄 x 第一章 研究背景 1 第一節 肺癌的流行病學與型態 1 第二節 抽菸與肺癌的相關性 1 第三節 肺腺癌與肺部鱗狀細胞癌治療發展現況 1 第四節 抽菸者與從未抽菸者的基因表現差異 2 第五節 肺癌型態間的基因表現差異 2 第二章 中介效應分析(Mediation analysis)的發展 4 第一節 中介效應分析的方法學發展 4 第二節 中介效應分析應用於基因與癌症間的關係 5 第三章 基因多重檢定校正方法 6 第一節 False discovery rate (FDR) 6 第二節 Q-values 6 第四章 知識鴻溝與研究目的 7 第五章 材料與方法 8 第一節 資料來源 8 壹 美國癌症基因體圖譜計畫 (The Cancer Genome Atlas, TCGA) 8 貳 Gene Expression Omnibus (GEO) 8 第二節 研究流程概要 8 第三節 資料處理 9 壹 RNA定序(RNA-sequencing) 基因表現量單位轉換 9 貳 跨平台基因表現量正規化 (Cross-platform normalization) 10 第四節 分析 11 壹 人口學變項分析 11 貳 中介效應分析 11 參 中介效應視覺化 16 肆 敏感度分析(Sensitivity analysis) 17 伍 中介效應的樣本數計算 18 第六章 結果 19 第一節 跨平台基因表現量正規化(Cross-platform normalization) 19 第二節 人口學變項分布 19 第三節 單一中介因子(Single mediator) 20 第四節 多個中介因子(Multiple mediators) 22 第五節 中介效應視覺化 23 第六節 敏感度分析(Sensitivity analysis) 24 第七章 結論與討論 26 第一節 主要發現 (Main findings) 26 第二節 與先前研究比較 (Comparison with previous studies) 26 第三節 生物機制 (Biological mechanism) 27 第四節 公共衛生與臨床意義 (Public health and clinical implication) 27 第五節 研究長處與限制 (Strengths and limitations) 28 參考文獻 29 | |
dc.language.iso | zh-TW | |
dc.title | 以中介效應分析評估吸菸誘導之人類肺腺癌及肺部鱗狀細胞 癌的差異基因表達模式 | zh_TW |
dc.title | Smoking-Induced Differential Gene Expression Patterns in Human Lung Adenocarcinomas and Squamous Cell Carcinomas:An Assessment of Mediation | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-1 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 簡國龍 | |
dc.contributor.oralexamcommittee | 李文宗,林菀俞,黃彥棕 | |
dc.subject.keyword | 肺癌,抽菸,鱗狀細胞癌,中介效應分析,基因表現量, | zh_TW |
dc.subject.keyword | Lung cancer,Smoking,Squamous cell carcinoma,Causal mediation analysis,Gene expression, | en |
dc.relation.page | 67 | |
dc.identifier.doi | 10.6342/NTU201800348 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2018-02-06 | |
dc.contributor.author-college | 公共衛生學院 | zh_TW |
dc.contributor.author-dept | 流行病學與預防醫學研究所 | zh_TW |
顯示於系所單位: | 流行病學與預防醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 8.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。