Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20104
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor詹東榮
dc.contributor.authorChih-Ju Huangen
dc.contributor.author黃致儒zh_TW
dc.date.accessioned2021-06-08T02:40:09Z-
dc.date.copyright2018-05-17
dc.date.issued2018
dc.date.submitted2018-05-16
dc.identifier.citationAhmed, S. R., Kim, J., Suzuki, T., Lee, J., & Park, E. Y. (2016). Detection of influenza virus using peroxidase-mimic of gold nanoparticles. Biotechnol Bioeng, 113(10), 2298-2303. doi:10.1002/bit.25982
Almeida, J. P., Lin, A. Y., Langsner, R. J., Eckels, P., Foster, A. E., & Drezek, R. A. (2014). In vivo immune cell distribution of gold nanoparticles in naive and tumor bearing mice. Small, 10(4), 812-819. doi:10.1002/smll.201301998
Arora, S., Sharma, P., Kumar, S., Nayan, R., Khanna, P. K., & Zaidi, M. G. H. (2012). Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regulation, 66(3), 303-310. doi:10.1007/s10725-011-9649-z
Auffan, M., Pedeutour, M., Rose, J., Masion, A., Ziarelli, F., Borschneck, D., Chaneac, C., Botta, C., Chaurand, P., Labille, J. a., & Bottero, A. (2010). Structural degradation at the surface of a TiO2-based nanomaterial used in cosmetics. Environ. Sci. Technol.
Augier, S., Ciucci, T., Luci, C., Carle, G. F., Blin-Wakkach, C., & Wakkach, A. (2010). Inflammatory blood monocytes contribute to tumor development and represent a privileged target to improve host immunosurveillance. J Immunol, 185(12), 7165-7173. doi:10.4049/jimmunol.0902583
Auttachoat, W., McLoughlin, C. E., White, K. L., Jr., & Smith, M. J. (2014). Route-dependent systemic and local immune effects following exposure to solutions prepared from titanium dioxide nanoparticles. J Immunotoxicol, 11(3), 273-282. doi:10.3109/1547691x.2013.844750
Bancos, S., Stevens, D. L., & Tyner, K. M. (2015). Effect of silica and gold nanoparticles on macrophage proliferation, activation markers, cytokine production, and phagocytosis in vitro. Int J Nanomedicine, 10, 183-206. doi:10.2147/ijn.s72580
Birjandi, S. Z., Ippolito, J. A., Ramadorai, A. K., & Witte, P. L. (2011). Alterations in marginal zone macrophages and marginal zone B cells in old mice. J Immunol, 186(6), 3441-3451. doi:10.4049/jimmunol.1001271
Bronte, V. (2009). Myeloid-derived suppressor cells in inflammation: uncovering cell subsets with enhanced immunosuppressive functions. Eur J Immunol, 39(10), 2670-2672. doi:10.1002/eji.200939892
Cabuzu, D., Cirja, A., Puiu, R., & Grumezescu, A. M. (2015). Biomedical applications of gold nanoparticles. Curr Top Med Chem, 15(16), 1605-1613.
Carabineiro, S. A. C. (2017). Applications of Gold Nanoparticles in Nanomedicine: Recent Advances in Vaccines. Molecules, 22(5). doi:10.3390/molecules22050857
Cardoso, E., Rezin, G. T., Zanoni, E. T., de Souza Notoya, F., Leffa, D. D., Damiani, A. P., Daumann, F., Rodriguez, J. C., Benavides, R., da Silva, L., Andrade, V. M., & da Silva Paula, M. M. (2014). Acute and chronic administration of gold nanoparticles cause DNA damage in the cerebral cortex of adult rats. Mutat Res, 766-767, 25-30. doi:10.1016/j.mrfmmm.2014.05.009
Chakraborty, C., Sharma, A. R., Sharma, G., & Lee, S. S. (2016). Zebrafish: A complete animal model to enumerate the nanoparticle toxicity. J Nanobiotechnology, 14(1), 65. doi:10.1186/s12951-016-0217-6
Chen, B. A., Jin, N., Wang, J., Ding, J., Gao, C., Cheng, J., Xia, G., Gao, F., Zhou, Y., Chen, Y., Zhou, G., Li, X., Zhang, Y., Tang, M., & Wang, X. (2010). The effect of magnetic nanoparticles of Fe(3)O(4) on immune function in normal ICR mice. Int J Nanomedicine, 5, 593-599.
Chen, T. H., Lin, C. Y., & Tseng, M. C. (2011). Behavioral effects of titanium dioxide nanoparticles on larval zebrafish (Danio rerio). Mar Pollut Bull, 63(5-12), 303-308. doi:10.1016/j.marpolbul.2011.04.017
Chen, Y. S., Hung, Y. C., Liau, I., & Huang, G. S. (2009). Assessment of the In Vivo Toxicity of Gold Nanoparticles. Nanoscale Res Lett, 4(8), 858-864. doi:10.1007/s11671-009-9334-6
Cho, W. S., Cho, M., Jeong, J., Choi, M., Cho, H. Y., Han, B. S., Kim, S. H., Kim, H. O., Lim, Y. T., Chung, B. H., & Jeong, J. (2009). Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles. Toxicol Appl Pharmacol, 236(1), 16-24. doi:10.1016/j.taap.2008.12.023
Choi, J. E., Kim, S., Ahn, J. H., Youn, P., Kang, J. S., Park, K., Yi, J., & Ryu, D. Y. (2010). Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. Aquat Toxicol, 100(2), 151-159. doi:10.1016/j.aquatox.2009.12.012
Crevillen, A. G., Pumera, M., Gonzalez, M. C., & Escarpa, A. (2009). Towards lab-on-a-chip approaches in real analytical domains based on microfluidic chips/electrochemical multi-walled carbon nanotube platforms. Lab Chip, 9(2), 346-353. doi:10.1039/b809963d
Cripps, J. G., & Gorham, J. D. (2011). MDSC in autoimmunity. Int Immunopharmacol, 11(7), 789-793. doi:10.1016/j.intimp.2011.01.026
Crook, K. R., Jin, M., Weeks, M. F., Rampersad, R. R., Baldi, R. M., Glekas, A. S., Shen, Y., Esserman, D. A., Little, P., Schwartz, T. A., & Liu, P. (2015). Myeloid-derived suppressor cells regulate T cell and B cell responses during autoimmune disease. J Leukoc Biol, 97(3), 573-582. doi:10.1189/jlb.4A0314-139R
D'Amico, F., & Skarmoutsou, E. (2008). Quantifying immunogold labelling in transmission electron microscopy. J Microsc, 230(Pt 1), 9-15. doi:10.1111/j.1365-2818.2008.01949.x
De Sanctis, F., Solito, S., Ugel, S., Molon, B., Bronte, V., & Marigo, I. (2016). MDSCs in cancer: Conceiving new prognostic and therapeutic targets. Biochim Biophys Acta, 1865(1), 35-48. doi:10.1016/j.bbcan.2015.08.001
Ding, L., Liu, Z., Aggrey, M., Li, C., Chen, J., & Tong, L. (2015). Nanotoxicity: The Toxicity Research Progress of Metal and Metal- Containing Nanoparticles. Mini-Reviews in Medicinal Chemistry, 15(7), 529-542. doi:10.2174/138955751507150424104334
Dkhil, M. A., Bauomy, A. A., Diab, M. S., & Al-Quraishy, S. (2015). Antioxidant and hepatoprotective role of gold nanoparticles against murine hepatic schistosomiasis. Int J Nanomedicine, 10, 7467-7475. doi:10.2147/ijn.s97622
Dominguez, A., Suarez-Merino, B., & Goni-de-Cerio, F. (2014). Nanoparticles and blood-brain barrier: the key to central nervous system diseases. J Nanosci Nanotechnol, 14(1), 766-779.
Dykman, L. A., & Khlebtsov, N. G. (2017). Immunological properties of gold nanoparticles. Chem Sci, 8(3), 1719-1735. doi:10.1039/c6sc03631g
Fraga, S., Brandao, A., Soares, M. E., Morais, T., Duarte, J. A., Pereira, L., Soares, L., Neves, C., Pereira, E., Bastos Mde, L., & Carmo, H. (2014). Short- and long-term distribution and toxicity of gold nanoparticles in the rat after a single-dose intravenous administration. Nanomedicine, 10(8), 1757-1766. doi:10.1016/j.nano.2014.06.005
Fujii, W., Ashihara, E., Hirai, H., Nagahara, H., Kajitani, N., Fujioka, K., Murakami, K., Seno, T., Yamamoto, A., Ishino, H., Kohno, M., Maekawa, T., & Kawahito, Y. (2013). Myeloid-derived suppressor cells play crucial roles in the regulation of mouse collagen-induced arthritis. J Immunol, 191(3), 1073-1081. doi:10.4049/jimmunol.1203535
Gabrilovich, D. I., & Nagaraj, S. (2009). Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol, 9(3), 162-174. doi:10.1038/nri2506
Gabrilovich, D. I., Ostrand-Rosenberg, S., & Bronte, V. (2012). Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol, 12(4), 253-268. doi:10.1038/nri3175
Gallina, G., Dolcetti, L., Serafini, P., De Santo, C., Marigo, I., Colombo, M. P., Basso, G., Brombacher, F., Borrello, I., Zanovello, P., Bicciato, S., & Bronte, V. (2006). Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J Clin Invest, 116(10), 2777-2790. doi:10.1172/jci28828
Gamal-Eldeen, A. M., Moustafa, D., El-Daly, S. M., Abo-Zeid, M. A. M., Saleh, S., Khoobchandani, M., Katti, K., Shukla, R., & Katti, K. V. (2017). Gum Arabic-encapsulated gold nanoparticles for a non-invasive photothermal ablation of lung tumor in mice. Biomed Pharmacother, 89, 1045-1054. doi:10.1016/j.biopha.2017.03.006
Guerrero, A. R., Hassan, N., Escobar, C. A., Albericio, F., Kogan, M. J., & Araya, E. (2014). Gold nanoparticles for photothermally controlled drug release. Nanomedicine (Lond), 9(13), 2023-2039. doi:10.2217/nnm.14.126
Guo, S., & Huang, L. (2014). Nanoparticles containing insoluble drug for cancer therapy. Biotechnol Adv, 32(4), 778-788. doi:10.1016/j.biotechadv.2013.10.002
Gupta, J. (2011). Nanotechnology applications in medicine and dentistry. J Investig Clin Dent, 2(2), 81-88. doi:10.1111/j.2041-1626.2011.00046.x
Haile, L. A., von Wasielewski, R., Gamrekelashvili, J., Kruger, C., Bachmann, O., Westendorf, A. M., Buer, J., Liblau, R., Manns, M. P., Korangy, F., & Greten, T. F. (2008). Myeloid-derived suppressor cells in inflammatory bowel disease: a new immunoregulatory pathway. Gastroenterology, 135(3), 871-881, 881 e871-875. doi:10.1053/j.gastro.2008.06.032
Hainfeld, J. F., Smilowitz, H. M., O'Connor, M. J., Dilmanian, F. A., & Slatkin, D. N. (2013). Gold nanoparticle imaging and radiotherapy of brain tumors in mice. Nanomedicine (Lond), 8(10), 1601-1609. doi:10.2217/nnm.12.165
Hannah, W., & Thompson, P. B. (2008). Nanotechnology, risk and the environment: a review. J Environ Monit, 10(3), 291-300. doi:10.1039/b718127m
Huang, K. L., Lee, Y. H., Chen, H. I., Liao, H. S., Chiang, B. L., & Cheng, T. J. (2015). Zinc oxide nanoparticles induce eosinophilic airway inflammation in mice. J Hazard Mater, 297, 304-312. doi:10.1016/j.jhazmat.2015.05.023
Huo, S., Ma, H., Huang, K., Liu, J., Wei, T., Jin, S., Zhang, J., He, S., & Liang, X. J. (2013). Superior penetration and retention behavior of 50 nm gold nanoparticles in tumors. Cancer Res, 73(1), 319-330. doi:10.1158/0008-5472.can-12-2071
Hutter, E., Boridy, S., Labrecque, S., Lalancette-Hebert, M., Kriz, J., Winnik, F. M., & Maysinger, D. (2010). Microglial response to gold nanoparticles. ACS Nano, 4(5), 2595-2606. doi:10.1021/nn901869f
Ibrahim, R. K., Hayyan, M., AlSaadi, M. A., Hayyan, A., & Ibrahim, S. (2016). Environmental application of nanotechnology: air, soil, and water. Environ Sci Pollut Res Int, 23(14), 13754-13788. doi:10.1007/s11356-016-6457-z
Ilves, M., Palomaki, J., Vippola, M., Lehto, M., Savolainen, K., Savinko, T., & Alenius, H. (2014). Topically applied ZnO nanoparticles suppress allergen induced skin inflammation but induce vigorous IgE production in the atopic dermatitis mouse model. Part Fibre Toxicol, 11, 38. doi:10.1186/s12989-014-0038-4
Jiao, P. F., Zhou, H. Y., Chen, L. X., & Yan, B. (2011). Cancer-targeting multifunctionalized gold nanoparticles in imaging and therapy. Curr Med Chem, 18(14), 2086-2102.
Jing, L., Liang, X., Deng, Z., Feng, S., Li, X., Huang, M., Li, C., & Dai, Z. (2014). Prussian blue coated gold nanoparticles for simultaneous photoacoustic/CT bimodal imaging and photothermal ablation of cancer. Biomaterials, 35(22), 5814-5821. doi:10.1016/j.biomaterials.2014.04.005
Kafshdooz, L., Kafshdooz, T., Razban, Z., & Akbarzadeh, A. (2016). The application of gold nanoparticles as a promising therapeutic approach in breast and ovarian cancer. Artif Cells Nanomed Biotechnol, 44(5), 1222-1227. doi:10.3109/21691401.2015.1029625
Karimi, M., Zare, H., Bakhshian Nik, A., Yazdani, N., Hamrang, M., Mohamed, E., Sahandi Zangabad, P., Moosavi Basri, S. M., Bakhtiari, L., & Hamblin, M. R. (2016). Nanotechnology in diagnosis and treatment of coronary artery disease. Nanomedicine (Lond), 11(5), 513-530. doi:10.2217/nnm.16.3
Kariyone, A., Tamura, T., Kano, H., Iwakura, Y., Takeda, K., Akira, S., & Takatsu, K. (2003). Immunogenicity of Peptide-25 of Ag85B in Th1 development: role of IFN-gamma. Int Immunol, 15(10), 1183-1194.
Khan, H. A., Abdelhalim, M. A., Alhomida, A. S., & Al Ayed, M. S. (2013). Transient increase in IL-1beta, IL-6 and TNF-alpha gene expression in rat liver exposed to gold nanoparticles. Genet Mol Res, 12(4), 5851-5857. doi:10.4238/2013.November.22.12
Khezri, S. M., Shariat, S. M., & Tabibian, S. (2013). Evaluation of extracting titanium dioxide from water-based paint sludge in auto-manufacturing industries and its application in paint production. Toxicol Ind Health, 29(8), 697-703. doi:10.1177/0748233711430977
Khlebtsov, N., & Dykman, L. (2011). Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev, 40(3), 1647-1671. doi:10.1039/c0cs00018c
Kim, J. S., Kuk, E., Yu, K. N., Kim, J.-H., Park, S. J., Lee, H. J., Kim, S. H., Park, Y. K., Park, Y. H., Hwang, C.-Y., Kim, Y.-K., Lee, Y.-S., Jeong, D. H., & Cho, M.-H. (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 3(1), 95-101. doi:https://doi.org/10.1016/j.nano.2006.12.001
Kim, K. T., Zaikova, T., Hutchison, J. E., & Tanguay, R. L. (2013). Gold nanoparticles disrupt zebrafish eye development and pigmentation. Toxicol Sci, 133(2), 275-288. doi:10.1093/toxsci/kft081
Kingston, M., Pfau, J. C., Gilmer, J., & Brey, R. (2016). Selective inhibitory effects of 50-nm gold nanoparticles on mouse macrophage and spleen cells. J Immunotoxicol, 13(2), 198-208. doi:10.3109/1547691X.2015.1035819
Koehn, B. H., & Blazar, B. R. (2017). Role of myeloid-derived suppressor cells in allogeneic hematopoietic cell transplantation. J Leukoc Biol. doi:10.1189/jlb.5MR1116-464R
Kumar, S., Ahlawat, W., Bhanjana, G., Heydarifard, S., Nazhad, M. M., & Dilbaghi, N. (2014). Nanotechnology-based water treatment strategies. J Nanosci Nanotechnol, 14(2), 1838-1858.
Kuo, C.-L., Wang, C.-L., Ko, H.-H., Hwang, W.-S., Chang, K.-m., Li, W.-L., Huang, H.-H., Chang, Y.-H., & Wang, M.-C. (2010). Synthesis of zinc oxide nanocrystalline powders for cosmetic applications. Ceramics International, 36(2), 693-698. doi:https://doi.org/10.1016/j.ceramint.2009.10.011
Kwak, Y., Kim, H. E., & Park, S. G. (2015). Insights into Myeloid-Derived Suppressor Cells in Inflammatory Diseases. Arch Immunol Ther Exp (Warsz), 63(4), 269-285. doi:10.1007/s00005-015-0342-1
Lai, S. F., Ko, B. H., Chien, C. C., Chang, C. J., Yang, S. M., Chen, H. H., Petibois, C., Hueng, D. Y., Ka, S. M., Chen, A., Margaritondo, G., & Hwu, Y. (2015). Gold nanoparticles as multimodality imaging agents for brain gliomas. J Nanobiotechnology, 13, 85. doi:10.1186/s12951-015-0140-2
Li, K., Zhang, Z., Zheng, L., Liu, H., Wei, W., Li, Z., He, Z., Larson, A. C., & Zhang, G. (2015). Arg-Gly-Asp-D-Phe-Lys peptide-modified PEGylated dendrimer-entrapped gold nanoparticles for targeted computed tomography imaging of breast carcinoma. Nanomedicine (Lond), 10(14), 2185-2197. doi:10.2217/nnm.15.59
Li, Q., Mahendra, S., Lyon, D. Y., Brunet, L., Liga, M. V., Li, D., & Alvarez, P. J. J. (2008). Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications. Water Research, 42(18), 4591-4602. doi:https://doi.org/10.1016/j.watres.2008.08.015
Li, Z., Huang, H., Tang, S., Li, Y., Yu, X. F., Wang, H., Li, P., Sun, Z., Zhang, H., Liu, C., & Chu, P. K. (2015). Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy. Biomaterials, 74, 144-154. doi:10.1016/j.biomaterials.2015.09.038
Libutti, S. K., Paciotti, G. F., Byrnes, A. A., Alexander, H. R., Jr., Gannon, W. E., Walker, M., Seidel, G. D., Yuldasheva, N., & Tamarkin, L. (2010). Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clin Cancer Res, 16(24), 6139-6149. doi:10.1158/1078-0432.ccr-10-0978
Liu, J., Yu, M., Ning, X., Zhou, C., Yang, S., & Zheng, J. (2013). PEGylation and zwitterionization: pros and cons in the renal clearance and tumor targeting of near-IR-emitting gold nanoparticles. Angew Chem Int Ed Engl, 52(48), 12572-12576. doi:10.1002/anie.201304465
Liu, Z., Li, W., Wang, F., Sun, C., Wang, L., Wang, J., & Sun, F. (2012). Enhancement of lipopolysaccharide-induced nitric oxide and interleukin-6 production by PEGylated gold nanoparticles in RAW264.7 cells. Nanoscale, 4(22), 7135-7142. doi:10.1039/c2nr31355c
Lopez-Moreno, M. L., de la Rosa, G., Hernandez-Viezcas, J. A., Castillo-Michel, H., Botez, C. E., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2010). Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol, 44(19), 7315-7320. doi:10.1021/es903891g
Mahdavi, M., Mavandadnejad, F., Yazdi, M. H., Faghfuri, E., Hashemi, H., Homayouni-Oreh, S., Farhoudi, R., & Shahverdi, A. R. (2017). Oral administration of synthetic selenium nanoparticles induced robust Th1 cytokine pattern after HBs antigen vaccination in mouse model. J Infect Public Health, 10(1), 102-109. doi:10.1016/j.jiph.2016.02.006
Matsumura, T., Ato, M., Ikebe, T., Ohnishi, M., Watanabe, H., & Kobayashi, K. (2012). Interferon-gamma-producing immature myeloid cells confer protection against severe invasive group A Streptococcus infections. Nat Commun, 3, 678. doi:10.1038/ncomms1677
Meir, R., Motiei, M., & Popovtzer, R. (2014). Gold nanoparticles for in vivo cell tracking. Nanomedicine (Lond), 9(13), 2059-2069. doi:10.2217/nnm.14.129
Mishra, V., Baranwal, V., Mishra, R. K., Sharma, S., Paul, B., & Pandey, A. C. (2016). Titanium dioxide nanoparticles augment allergic airway inflammation and Socs3 expression via NF-kappaB pathway in murine model of asthma. Biomaterials, 92, 90-102. doi:10.1016/j.biomaterials.2016.03.016
Morais, T., Soares, M. E., Duarte, J. A., Soares, L., Maia, S., Gomes, P., Pereira, E., Fraga, S., Carmo, H., & Bastos Mde, L. (2012). Effect of surface coating on the biodistribution profile of gold nanoparticles in the rat. Eur J Pharm Biopharm, 80(1), 185-193. doi:10.1016/j.ejpb.2011.09.005
Muller, A. P., Ferreira, G. K., Pires, A. J., de Bem Silveira, G., de Souza, D. L., Brandolfi, J. A., de Souza, C. T., Paula, M. M. S., & Silveira, P. C. L. (2017). Gold nanoparticles prevent cognitive deficits, oxidative stress and inflammation in a rat model of sporadic dementia of Alzheimer's type. Mater Sci Eng C Mater Biol Appl, 77, 476-483. doi:10.1016/j.msec.2017.03.283
Musolino, C., Allegra, A., Pioggia, G., & Gangemi, S. (2017). Immature myeloid-derived suppressor cells: A bridge between inflammation and cancer (Review). Oncol Rep, 37(2), 671-683. doi:10.3892/or.2016.5291
Nam, J. M., Park, S. J., & Mirkin, C. A. (2002). Bio-barcodes based on oligonucleotide-modified nanoparticles. J Am Chem Soc, 124(15), 3820-3821.
Nosratabadi, R., Rastin, M., Sankian, M., Haghmorad, D., & Mahmoudi, M. (2016). Hyperforin-loaded gold nanoparticle alleviates experimental autoimmune encephalomyelitis by suppressing Th1 and Th17 cells and upregulating regulatory T cells. Nanomedicine, 12(7), 1961-1971. doi:10.1016/j.nano.2016.04.001
Ost, M., Singh, A., Peschel, A., Mehling, R., Rieber, N., & Hartl, D. (2016). Myeloid-Derived Suppressor Cells in Bacterial Infections. Front Cell Infect Microbiol, 6, 37. doi:10.3389/fcimb.2016.00037
Pan, Y., Leifert, A., Ruau, D., Neuss, S., Bornemann, J., Schmid, G., Brandau, W., Simon, U., & Jahnen-Dechent, W. (2009). Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small, 5(18), 2067-2076. doi:10.1002/smll.200900466
Panahi, Y., Mohammadhosseini, M., Nejati-Koshki, K., Abadi, A. J., Moafi, H. F., Akbarzadeh, A., & Farshbaf, M. (2017). Preparation, Surface Properties, and Therapeutic Applications of Gold Nanoparticles in Biomedicine. Drug Res (Stuttg), 67(2), 77-87. doi:10.1055/s-0042-115171
Pokhrel, L. R., & Dubey, B. (2013). Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Sci Total Environ, 452-453, 321-332. doi:10.1016/j.scitotenv.2013.02.059
Pornpattananangkul, D., Zhang, L., Olson, S., Aryal, S., Obonyo, M., Vecchio, K., Huang, C. M., & Zhang, L. (2011). Bacterial toxin-triggered drug release from gold nanoparticle-stabilized liposomes for the treatment of bacterial infection. J Am Chem Soc, 133(11), 4132-4139. doi:10.1021/ja111110e
Pozo, A. L., Godfrey, E. M., & Bowles, K. M. (2009). Splenomegaly: investigation, diagnosis and management. Blood Rev, 23(3), 105-111. doi:10.1016/j.blre.2008.10.001
Pyzer, A. R., Cole, L., Rosenblatt, J., & Avigan, D. E. (2016). Myeloid-derived suppressor cells as effectors of immune suppression in cancer. Int J Cancer, 139(9), 1915-1926. doi:10.1002/ijc.30232
Raber, P. L., Thevenot, P., Sierra, R., Wyczechowska, D., Halle, D., Ramirez, M. E., Ochoa, A. C., Fletcher, M., Velasco, C., Wilk, A., Reiss, K., & Rodriguez, P. C. (2014). Subpopulations of myeloid-derived suppressor cells impair T cell responses through independent nitric oxide-related pathways. Int J Cancer, 134(12), 2853-2864. doi:10.1002/ijc.28622
Rajendran, C. Balakumar, Hasabo A. Mohammed Ahammed, S. Jayakumar, Vaideki, K., & Rajesh, a. E. M. (2010). Use of zinc oxide nano particles for production of antimicrobial textiles. International Journal of Engineering, Science and Technology, 2, 202-208.
Salazar-Gonzalez, J. A., Gonzalez-Ortega, O., & Rosales-Mendoza, S. (2015). Gold nanoparticles and vaccine development. Expert Rev Vaccines, 14(9), 1197-1211. doi:10.1586/14760584.2015.1064772
Sang, X., Fei, M., Sheng, L., Zhao, X., Yu, X., Hong, J., Ze, Y., Gui, S., Sun, Q., Ze, X., Wang, L., & Hong, F. (2014). Immunomodulatory effects in the spleen-injured mice following exposure to titanium dioxide nanoparticles. J Biomed Mater Res A, 102(10), 3562-3572. doi:10.1002/jbm.a.35034
Schatz, A. R., Koh, W. S., & Kaminski, N. E. (1993). Delta 9-tetrahydrocannabinol selectively inhibits T-cell dependent humoral immune responses through direct inhibition of accessory T-cell function. Immunopharmacology, 26(2), 129-137.
Sekhon, B. S. (2014). Nanotechnology in agri-food production: an overview. Nanotechnology, Science and Applications, 7, 31-53. doi:10.2147/NSA.S39406
Serra, P., & Santamaria, P. (2015). Nanoparticle-based autoimmune disease therapy. Clin Immunol, 160(1), 3-13. doi:10.1016/j.clim.2015.02.003
Shen, C. C., Wang, C. C., Liao, M. H., & Jan, T. R. (2011). A single exposure to iron oxide nanoparticles attenuates antigen-specific antibody production and T-cell reactivity in ovalbumin-sensitized BALB/c mice. Int J Nanomedicine, 6, 1229-1235. doi:10.2147/ijn.s21019
Sonavane, G., Tomoda, K., & Makino, K. (2008). Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf B Biointerfaces, 66(2), 274-280. doi:10.1016/j.colsurfb.2008.07.004
Song, C., Yuan, Y., Wang, X. M., Li, D., Zhang, G. M., Huang, B., & Feng, Z. H. (2014). Passive transfer of tumour-derived MDSCs inhibits asthma-related airway inflammation. Scand J Immunol, 79(2), 98-104. doi:10.1111/sji.12140
Stern, J. M., Kibanov Solomonov, V. V., Sazykina, E., Schwartz, J. A., Gad, S. C., & Goodrich, G. P. (2016). Initial Evaluation of the Safety of Nanoshell-Directed Photothermal Therapy in the Treatment of Prostate Disease. Int J Toxicol, 35(1), 38-46. doi:10.1177/1091581815600170
Sumbayev, V. V., Yasinska, I. M., Garcia, C. P., Gilliland, D., Lall, G. S., Gibbs, B. F., Bonsall, D. R., Varani, L., Rossi, F., & Calzolai, L. (2013). Gold nanoparticles downregulate interleukin-1beta-induced pro-inflammatory responses. Small, 9(3), 472-477. doi:10.1002/smll.201201528
Sun, M., Liu, F., Zhu, Y., Wang, W., Hu, J., Liu, J., Dai, Z., Wang, K., Wei, Y., Bai, J., & Gao, W. (2016). Salt-induced aggregation of gold nanoparticles for photoacoustic imaging and photothermal therapy of cancer. Nanoscale, 8(8), 4452-4457. doi:10.1039/c6nr00056h
Sun, Y. N., Wang, C. D., Zhang, X. M., Ren, L., & Tian, X. H. (2011). Shape dependence of gold nanoparticles on in vivo acute toxicological effects and biodistribution. J Nanosci Nanotechnol, 11(2), 1210-1216.
Talmadge, J. E., & Gabrilovich, D. I. (2013). History of myeloid-derived suppressor cells. Nat Rev Cancer, 13(10), 739-752. doi:10.1038/nrc3581
Tankhiwale, R., & Bajpai, S. K. (2012). Preparation, characterization and antibacterial applications of ZnO-nanoparticles coated polyethylene films for food packaging. Colloids and Surfaces B: Biointerfaces, 90, 16-20. doi:https://doi.org/10.1016/j.colsurfb.2011.09.031
Tao, W., & Gill, H. S. (2015). M2e-immobilized gold nanoparticles as influenza A vaccine: Role of soluble M2e and longevity of protection. Vaccine, 33(20), 2307-2315. doi:10.1016/j.vaccine.2015.03.063
Tidke, P. R., Gupta, I., Gade, A. K., & Rai, M. (2014). Fungus-mediated synthesis of gold nanoparticles and standardization of parameters for its biosynthesis. IEEE Trans Nanobioscience, 13(4), 397-402. doi:10.1109/tnb.2014.2347803
Umansky, V., Blattner, C., Gebhardt, C., & Utikal, J. (2016). The Role of Myeloid-Derived Suppressor Cells (MDSC) in Cancer Progression. Vaccines (Basel), 4(4). doi:10.3390/vaccines4040036
Vandebriel, R. J., Tonk, E. C., de la Fonteyne-Blankestijn, L. J., Gremmer, E. R., Verharen, H. W., van der Ven, L. T., van Loveren, H., & de Jong, W. H. (2014). Immunotoxicity of silver nanoparticles in an intravenous 28-day repeated-dose toxicity study in rats. Part Fibre Toxicol, 11, 21. doi:10.1186/1743-8977-11-21
Walmsley, G. G., McArdle, A., Tevlin, R., Momeni, A., Atashroo, D., Hu, M. S., Feroze, A. H., Wong, V. W., Lorenz, P. H., Longaker, M. T., & Wan, D. C. (2015). Nanotechnology in bone tissue engineering. Nanomedicine, 11(5), 1253-1263. doi:10.1016/j.nano.2015.02.013
Walters, G., & Parkin, I. P. (2009). The incorporation of noble metal nanoparticles into host matrix thin films: synthesis, characterisation and applications. J. Mater. Chem., 19(5), 574-590. doi:10.1039/b809646e
Wang, J. Y., Chen, J., Yang, J., Wang, H., Shen, X., Sun, Y. M., Guo, M., & Zhang, X. D. (2016). Effects of surface charges of gold nanoclusters on long-term in vivo biodistribution, toxicity, and cancer radiation therapy. Int J Nanomedicine, 11, 3475-3485. doi:10.2147/IJN.S106073
Wang, L., Li, Y. F., Zhou, L., Liu, Y., Meng, L., Zhang, K., Wu, X., Zhang, L., Li, B., & Chen, C. (2010). Characterization of gold nanorods in vivo by integrated analytical techniques: their uptake, retention, and chemical forms. Anal Bioanal Chem, 396(3), 1105-1114. doi:10.1007/s00216-009-3302-y
Weaver, J. L., Tobin, G. A., Ingle, T., Bancos, S., Stevens, D., Rouse, R., Howard, K. E., Goodwin, D., Knapton, A., Li, X., Shea, K., Stewart, S., Xu, L., Goering, P. L., Zhang, Q., Howard, P. C., Collins, J., Khan, S., Sung, K., & Tyner, K. M. (2017). Evaluating the potential of gold, silver, and silica nanoparticles to saturate mononuclear phagocytic system tissues under repeat dosing conditions. Part Fibre Toxicol, 14(1), 25. doi:10.1186/s12989-017-0206-4
Wen, K. P., Chen, Y. C., Chuang, C. H., Chang, H. Y., Lee, C. Y., & Tai, N. H. (2015). Accumulation and toxicity of intravenously-injected functionalized graphene oxide in mice. J Appl Toxicol, 35(10), 1211-1218. doi:10.1002/jat.3187
Wong, I. Y., Bhatia, S. N., & Toner, M. (2013). Nanotechnology: emerging tools for biology and medicine. Genes Dev, 27(22), 2397-2408. doi:10.1101/gad.226837.113
Wu, H. Y., Lin, K. J., Wang, P. Y., Lin, C. W., Yang, H. W., Ma, C. C., Lu, Y. J., & Jan, T. R. (2014). Polyethylene glycol-coated graphene oxide attenuates antigen-specific IgE production and enhanced antigen-induced T-cell reactivity in ovalbumin-sensitized BALB/c mice. Int J Nanomedicine, 9, 4257-4266. doi:10.2147/ijn.s66768
Xin, J., Wang, S., Wang, B., Wang, J., Wang, J., Zhang, L., Xin, B., Shen, L., Zhang, Z., & Yao, C. (2018). AlPcS4-PDT for gastric cancer therapy using gold nanorod, cationic liposome, and Pluronic((R)) F127 nanomicellar drug carriers. Int J Nanomedicine, 13, 2017-2036. doi:10.2147/ijn.s154054
Xin, Q., Rotchell, J. M., Cheng, J., Yi, J., & Zhang, Q. (2015). Silver nanoparticles affect the neural development of zebrafish embryos. J Appl Toxicol, 35(12), 1481-1492. doi:10.1002/jat.3164
Xu, Y., Tang, H., Wang, H., & Liu, Y. (2015). Blockade of oral tolerance to ovalbumin in mice by silver nanoparticles. Nanomedicine (Lond), 10(3), 419-431. doi:10.2217/nnm.14.111
Yanagisawa, R., Takano, H., Inoue, K., Koike, E., Kamachi, T., Sadakane, K., & Ichinose, T. (2009). Titanium dioxide nanoparticles aggravate atopic dermatitis-like skin lesions in NC/Nga mice. Exp Biol Med (Maywood), 234(3), 314-322. doi:10.3181/0810-rm-304
Yang, F., Li, Y., Wu, T., Na, N., Zhao, Y., Li, W., Han, C., Zhang, L., Lu, J., & Zhao, Y. (2016). TNFalpha-induced M-MDSCs promote transplant immune tolerance via nitric oxide. J Mol Med (Berl), 94(8), 911-920. doi:10.1007/s00109-016-1398-z
Yang, L., Kuang, H., Zhang, W., Aguilar, Z. P., Wei, H., & Xu, H. (2017). Comparisons of the biodistribution and toxicological examinations after repeated intravenous administration of silver and gold nanoparticles in mice. Sci Rep, 7(1), 3303. doi:10.1038/s41598-017-03015-1
Yi, H., Guo, C., Yu, X., Zuo, D., & Wang, X. Y. (2012). Mouse CD11b+Gr-1+ myeloid cells can promote Th17 cell differentiation and experimental autoimmune encephalomyelitis. J Immunol, 189(9), 4295-4304. doi:10.4049/jimmunol.1200086
Yin, B., Ma, G., Yen, C. Y., Zhou, Z., Wang, G. X., Divino, C. M., Casares, S., Chen, S. H., Yang, W. C., & Pan, P. Y. (2010). Myeloid-derived suppressor cells prevent type 1 diabetes in murine models. J Immunol, 185(10), 5828-5834. doi:10.4049/jimmunol.0903636
Zhang, X. D., Wu, D., Shen, X., Liu, P. X., Fan, F. Y., & Fan, S. J. (2012). In vivo renal clearance, biodistribution, toxicity of gold nanoclusters. Biomaterials, 33(18), 4628-4638. doi:10.1016/j.biomaterials.2012.03.020
Zhang, X. D., Wu, D., Shen, X., Liu, P. X., Yang, N., Zhao, B., Zhang, H., Sun, Y. M., Zhang, L. A., & Fan, F. Y. (2011). Size-dependent in vivo toxicity of PEG-coated gold nanoparticles. Int J Nanomedicine, 6, 2071-2081. doi:10.2147/ijn.s21657
Zhang, X. D., Wu, H. Y., Wu, D., Wang, Y. Y., Chang, J. H., Zhai, Z. B., Meng, A. M., Liu, P. X., Zhang, L. A., & Fan, F. Y. (2010). Toxicologic effects of gold nanoparticles in vivo by different administration routes. Int J Nanomedicine, 5, 771-781. doi:10.2147/IJN.S8428
Zhang, Y. Q., Wang, Y. F., & Jiang, X. D. (2008). The application of nanoparticles in biochips. Recent Pat Biotechnol, 2(1), 55-59.
Zhao, L., Seth, A., Wibowo, N., Zhao, C. X., Mitter, N., Yu, C., & Middelberg, A. P. (2014). Nanoparticle vaccines. Vaccine, 32(3), 327-337. doi:10.1016/j.vaccine.2013.11.069
Zhou, Q., Zhang, Y., Du, J., Li, Y., Zhou, Y., Fu, Q., Zhang, J., Wang, X., & Zhan, L. (2016). Different-Sized Gold Nanoparticle Activator/Antigen Increases Dendritic Cells Accumulation in Liver-Draining Lymph Nodes and CD8+ T Cell Responses. ACS Nano, 10(2), 2678-2692. doi:10.1021/acsnano.5b07716
Zhu, X., Zhu, L., Duan, Z., Qi, R., Li, Y., & Lang, Y. (2008). Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage. J Environ Sci Health A Tox Hazard Subst Environ Eng, 43(3), 278-284. doi:10.1080/10934520701792779

dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20104-
dc.description.abstract奈米金在生物醫學領域的應用極具潛力,包含細胞成像、藥物傳輸、免疫治療以及光熱治療等。許多研究指出,奈米金會累積於脾臟中,暗示奈米金對免疫系統可能具有潛在的影響及毒性。文獻指出投予奈米金會影響免疫細胞的增生及其功能。然而,全身性暴露奈米金對免疫系統的潛在毒性與詳細機制的研究尚不充分,且奈米金是否影響抗原專一性免疫反應也有待釐清。因此,本論文的研究主旨在探討全身性暴露奈米金對卵白蛋白(ovalbumin;OVA)免疫小鼠之抗原專一性免疫反應及脾臟之影響。BALB/c小鼠於第1至8天,每天以靜脈注射方式投予奈米金(0.1-1 mg/kg)或磷酸鹽緩衝生理食鹽水作為對照組,於第2天給予腹腔注射OVA進行免疫,於第9天犧牲,採集各組小鼠血清以及脾臟進行後續實驗,包含血清中抗體表現量、脾臟指數(spleen index)、脾臟細胞族群、細胞激素表現量、掃描式電子顯微鏡觀察以及組織切片之免疫螢光染色觀察。實驗結果顯示,奈米金對於OVA免疫小鼠抗原專一性之抗體IgM、IgG1、IgG2a以及IgE並無影響,但造成脾臟指數顯著上升以及白髓之擴散。電子顯微鏡及X光能量散色光譜儀檢測到脾臟中有奈米金粒子。以流式細胞儀分析細胞表面抗原,發現脾臟中CD11b+Gr-1+細胞族群的比例顯著增加。將脾臟製備成單一細胞懸浮液,分別以脂多醣(lipopolysaccharide)或OVA刺激48或72小時後,以Griess反應測定一氧化氮(nitrite;NO)含量以及酵素連結免疫螢光分析法定量上清液中細胞激素之含量,結果顯示投予奈米金的組別,NO、腫瘤壞死因子(TNF)-α及干擾素(interferon;IFN)-γ表現量顯著上升。將脾臟組織切片以免疫螢光染色法,雙染檢測Gr-1和功能性之細胞激素介白素(interleukin;IL)-10、腫瘤生長因子(TGF)-β與IFN-γ,以及調節性T細胞之轉錄因子Foxp3和細胞激素IL-10,結果顯示給予奈米金之組別,位於脾臟白髓之Gr-1+IL-10+、Gr-1+TGF-β+、Gr-1+IFN-γ+以及Foxp3+IL-10+細胞數量皆顯著增加。本研究結果顯示全身性暴露奈米金,雖然對於抗原專一性之免疫反應無作用,但會引起脾臟發炎,且會誘導脾臟中具有表現細胞激素功能的骨髓衍生抑制型細胞(myeloid-derived suppressor cells)與調節性T細胞的增生。zh_TW
dc.description.abstractGold nanoparticles (AuNP) are promising nanomaterials used for various biomedical purposes such as cell imaging, drug delivery, immunotherapy, photothermal therapy, etc. Previous studies reported that AuNP were accumulated in the spleen in vivo, raising concerns on potential immunotoxicity. Although accumulating evidence demonstrates that exposure to AuNP affects the proliferation and functions of immune cells in a number of in vitro and in vivo models, the detailed immunomodulatory and/or immunotoxic effects of AuNP remain to be more comprehensively characterized. In addition, little is known pertaining to the effects of AuNP on the antigen-specific immune response. Hence, the objective of this thesis study is to investigate the effect of AuNP on antigen-specific immune response and the function of spleen in ovalbumin (OVA)-sensitized BALB/c mice. Mice were either left untreated (naïve; NA), or daily administered with AuNP (0.1-1 mg/kg) and/or vehicle (phosphate-buffered saline) by intravenous administration from day 1 to day 8. Except for the NA group, the mice were sensitized with OVA by intraperitoneal injection on day 2. All mice were sacrificed on day 9. Serum samples were collected and their spleens were harvested for further experiments. The level of OVA-specific antibodies in the serum was quantified by ELISA. The spleen index was calculated as the spleen weight divided by body weight. Single-cell splenocyte cultures were prepared and stimulated with lipopolysaccharide (LPS) and OVA for 48 and 72 h, respectively. The production of cytokines in the supernatant was quantified by ELISA. The secretion of nitrite oxide (NO) was measured by using Griess reagent. The cellularity of splenocytes was examined by flow cytometry. The number of splenic Foxp3+IL-10+, Gr-1+IFN-γ+, Gr-1+IL-10+ and Gr-1+TGF-β+ cells were detected by immunofluorescent staining. Scanning electron microscopy and energy dispersive X-ray spectroscopy were conducted for the detection of AuNP in the spleen section of AuNP-treated mice. The results showed that AuNP treatment did not affect the serum production of OVA-specific IgE, IgM, IgG1 and IgG2a. However, AuNP treatment significantly increased the spleen index and the population of CD11b+ cells in OVA-sensitized mice, whereas the number of CD4+, CD8+ and B220+ cells was unaffected. In addition, the diffusion of white pulps in AuNP-treated spleen was observed in H&E staining. Results from scanning electron microscopy and energy dispersive X-ray spectroscopy detected the presence of AuNP in the spleen. AuNP treatment markedly enhanced the production of NO and tumor necrosis factor (TNF)-α by LPS-stimulated splenocytes. The expression of interferon (IFN)-γ by splenocytes stimulated with OVA was also enhanced in AuNP-treated mice. Flow cytometric analysis of the splenic cellularity revealed an increased population of CD11b+Gr-1+ cells. The number of Foxp3+IL-10+, Gr-1+IFN-γ+, Gr-1+IL-10+ and Gr-1+TGF-β+ cells in the white pulps of spleens was significantly increased in AuNP-treated groups. Collectively, these results demonstrated that systemic exposure to AuNP did not affect antigen-specific antibody production, but caused an inflammatory status in the spleen, as evidenced by the increased spleen index and expression of NO and pro-inflammatory cytokines. In addition, the elevated population of splenic CD11b+Gr-1+, Foxp3+IL-10+, Gr-1+IFN-γ+, Gr-1+IL-10+ and Gr-1+TGF-β+ cells indicated that AuNP enhanced the development of functional myeloid-derived suppressor cells and regulatory T cells.en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:40:09Z (GMT). No. of bitstreams: 1
ntu-107-R04629003-1.pdf: 3328101 bytes, checksum: 231645d8827fc2886e3e87d8b9b83638 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書i
謝 辭ii
中文摘要iii
Abstractiv
目 錄vi
圖目錄viii
表目錄ix
第一章、介紹1
第一節、奈米簡介1
第二節、奈米金簡介2
第三節、奈米粒子於生醫領域之應用2
第四節、奈米粒子之毒性4
第五節、奈米粒子的免疫調節作用5
第六節、抗原專一性免疫反應7
第七節、骨髓衍生抑制型細胞8
第八節、研究動機9
第二章、實驗材料與方法10
第一節、實驗材料10
一、實驗試劑10
二、實驗儀器11
三、實驗動物12
第二節、實驗方法12
一、實驗設計與流程12
二、實驗方法12
第三章、實驗結果17
第一節、奈米金對血清中抗原專一性之抗體生成量無顯著性影響17
第二節、奈米金累積於小鼠脾臟並增加脾臟指數17
第三節、奈米金對脾臟中細胞族群之影響17
第四節、奈米金對於由骨髓性細胞所分泌之相關發炎因子的影響18
第五節、奈米金對於由T細胞所分泌之細胞激素的影響18
第六節、奈米金誘使骨髓衍生抑制型細胞的增生18
第七節、奈米金促使MDSC活化及調節性T細胞之增生19
第四章、討論35
第五章、結論42
​第六章、參考文獻43
dc.language.isozh-TW
dc.title奈米金在卵白蛋白免疫小鼠脾臟促進骨髓衍生抑制型細胞之生成zh_TW
dc.titleGold Nanoparticle Enhanced the Production of Myeloid-Derived Suppressor Cells in the Spleen of Ovalbumin-sensitized Miceen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王家琪,林時宜,梁弘人,梁有志
dc.subject.keyword抗原專一性,奈米金,發炎反應,卵白蛋白,骨髓衍生抑制型細胞和調節性T細胞,zh_TW
dc.subject.keywordantigen-specific immunity,gold nanoparticles,inflammatory responses,ovalbumin,mouse,myeloid-derived suppressor cells,regulatory T cells,spleen,en
dc.relation.page56
dc.identifier.doi10.6342/NTU201800815
dc.rights.note未授權
dc.date.accepted2018-05-17
dc.contributor.author-college獸醫專業學院zh_TW
dc.contributor.author-dept獸醫學研究所zh_TW
顯示於系所單位:獸醫學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
3.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved