Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20028
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡向榮(Hsiang-Jung Tsai)
dc.contributor.authorAi-Ping Hsuen
dc.contributor.author許愛萍zh_TW
dc.date.accessioned2021-06-08T02:38:58Z-
dc.date.copyright2018-07-23
dc.date.issued2018
dc.date.submitted2018-07-08
dc.identifier.citation1. King AA, Fooks AR, Aubert M, Wandeler A. Historical perspective of rabies in Europe and the Mediterranean Basin. Paris: OIE; 2004.
2. Botvinkin AD, Poleschuk EM, Kuzmin IV, Borisova TI, Gazaryan SV, Yager P, et al. Novel lyssaviruses isolated from bats in Russia. Emerg Infect Dis. 2003;9:1623-1625.
3. Kuzmin IV, Orciari LA, Arai YT, Smith JS, Hanlon CA, Kameoka Y, et al. Bat lyssaviruses (Aravan and Khujand) from Central Asia: phylogenetic relationships according to N, P and G gene sequences. Virus Res. 2003;97:65-79.
4. International Committee on Taxonomy of Viruses. November 16 2017. https://talk.ictvonline.org/taxonomy
5. Ceballos NA, Morón SV, Berciano JM, Nicolás O, López CA, Juste J, et al. Novel lyssavirus in bat, Spain. Emerg Infect Dis. 2013;19:793-795.
6. Gunawardena PS, Marston DA, Ellis RJ, Wise EL, Karawita AC, Breed AC, et al. Lyssavirus in Indian Flying Foxes, Sri Lanka. Emerg Infect Dis. 2016;22:1456-1459.
7. Hu SC, Hsu CL, Lee MS, Tu YC, Chang JC, Wu CH, et al. Lyssavirus in Japanese Pipistrelle, Taiwan. Emerg Infect Dis. 2018;24:782-785.
8. Nokireki T, Tammiranta N, Kokkonen UM, Kantala T, Gadd T. Tentative novel lyssavirus in a bat in Finland. Transbound Emerg Dis. 2018;65:593-596.
9. Tang Q, Li H. Epidemic situation and related factors analysis of rabies in China. Chin J Epidemiol. 2005;26:2.
10. Bourhy H, Kissi B, Tordo N. Molecular diversity of the Lyssavirus genus. Virology. 1993;194:70-81.
11. Kissi B, Tordo N, Bourhy H. Genetic polymorphism in the rabies virus nucleoprotein gene. Virology. 1995;209:526-537.
12. Smith JS, Orciari LA, Yager PA, Seidel HD, Warner CK. Epidemiologic and historical relationships among 87 rabies virus isolates as determined by limited sequence analysis. J Infect Dis. 1992;166:296-307.
13. Wiktor T, Flamand A, Koprowski H. Use of monoclonal antibodies in diagnosis of rabies virus infection and differentiation of rabies and rabies-related viruses. J Virol Methods. 1980;1:33-46.
14. Afonso CL, Amarasinghe GK, Bányai K, Bào Y, Basler CF, Bavari S, et al. Taxonomy of the order Mononegavirales: update 2016. Arch Virol. 2016;161:2351-2360.
15. Badrane H, Tordo N. Host switching in Lyssavirus history from the Chiroptera to the Carnivora orders. J Virol. 2001;75:8096-8104.
16. Cliquet F, Picard-Meyer E, Robardet E. Rabies in Europe: what are the risks? Expert Rev Anti Infect Ther. 2014;12:905–908..
17. Srinivasan A, Burton EC, Kuehnert MJ, Rupprecht C, Sutker WL, Ksiazek TG, et al. Transmission of rabies virus from an organ donor to four transplant recipients. N Engl J Med. 2005;352:1103-1111.
18. Vora N, Orciari L, Niezgoda M, Selvaggi G, Stosor V, Lyon G, et al. Clinical management and humoral immune responses to rabies post‐exposure prophylaxis among three patients who received solid organs from a donor with rabies. Transpl Infect Dis. 2015;17:389-395.
19. Chen S, Zhang H, Luo M, Chen J, Yao D, Chen F, et al. Rabies virus transmission in solid organ transplantation, China, 2015–2016. Emerg Infect Dis. 2017;23:1600-1602.
20. Maier T, Schwarting A, Mauer D, Ross R, Martens A, Kliem V, et al. Management and outcomes after multiple corneal and solid organ transplantations from a donor infected with rabies virus. Clin Infect Dis. 2010;50:1112-1119.
21. Johnson N, Phillpotts R, Fooks A. Airborne transmission of lyssaviruses. J Med Microbiol. 2006;55:785-790.
22. Davis AD, Rudd RJ, Bowen RA. Effects of aerosolized rabies virus exposure on bats and mice. J Infect Dis. 2007;195:1144-1150.
23. Jackson AC. Rabies pathogenesis. J Neurovirol. 2002;8:267-269.
24. Dyer JL, Yager P, Orciari L, Greenberg L, Wallace R, Hanlon CA, et al. Rabies surveillance in the United States during 2013. J Am Vet Med Assoc. 2014;245:1111-1123.
25. Zulu G, Sabeta C, Nel L. Molecular epidemiology of rabies: focus on domestic dogs (Canis familiaris) and black-backed jackals (Canis mesomelas) from northern South Africa. Virus Res. 2009;140:71-78.
26. Gong Z, Chen E, Wang Z, Jiang L, Zhu P, Wang F, et al. Overview and preventive measures of human rabies recent years in Zhejiang province. Chin J Vector Bio Control. 2004;15:59-60.
27. Fooks AR, Banyard AC, Horton DL, Johnson N, McElhinney LM, Jackson AC. Current status of rabies and prospects for elimination. Lancet. 2014;384:1389-1399.
28. Klingen Y, Conzelmann KK, Finke S. Double-labeled rabies virus: live tracking of enveloped virus transport. J Virol. 2008;82:237-245.
29. Gluska S, Zahavi EE, Chein M, Gradus T, Bauer A, Finke S, et al. Rabies virus hijacks and accelerates the p75NTR retrograde axonal transport machinery. PLoS Pathog 2014;10:e1004348.
30. Tsiang H. Evidence for an intraaxonal transport of fixed and street rabies virus. J Neuropathol Exp Neurol. 1979;38:286-296.
31. Ceccaldi P, Gillet J, Tsiang H. Inhibition of the transport of rabies virus in the central nervous system. J Neuropathol Exp Neurol. 1989;48:620-630.
32. Lycke E, Tsiang H. Rabies virus infection of cultured rat sensory neurons. J Virol. 1987;61:2733-2741.
33. Gillet J, Derer P, Tsiang H. Axonal transport of rabies virus in the central nervous system of the rat. J Neuropathol Exp Neurol. 1986;45:619-634.
34. Kucera P, Dolivo M, Coulon P, Flamand A. Pathways of the early propagation of virulent and avirulent rabies strains from the eye to the brain. J Virol. 1985;55:158-162.
35. Lahaye X, Vidy A, Pomier C, Obiang L, Harper F, Gaudin Y, et al. Functional characterization of Negri bodies (NBs) in rabies virus-infected cells: Evidence that NBs are sites of viral transcription and replication. J Virol. 2009;83:7948-7958.
36. Piccinotti S, Whelan SP. Rabies internalizes into primary peripheral neurons via clathrin coated pits and requires fusion at the cell body. PLoS Pathog. 2016;12:e1005753.
37. Charlton K, Casey G. Experimental rabies in skunks: immunofluorescence light and electron microscopic studies. Lab Invest. 1979;41:36-44.
38. Dierks R, Murphy F, Harrison A. Extraneural rabies virus infection. Virus development in fox salivary gland. Am J Pathol. 1969;54:251.
39. Charlton K, Casey G, Webster W. Rabies virus in the salivary glands and nasal mucosa of naturally infected skunks. Can J Comp Med. 1984;48:338.
40. Warrell M, Warrell D. Rabies and other lyssavirus diseases. Lancet. 2004;363:959-969.
41. Müller T, Demetriou P, Moynagh J, Cliquet F, Fooks A, Conraths F, et al. Rabies elimination in Europe: a success story. In: Fooks AR, Müller T, editors. Rabies control: towards sustainable prevention at the source, compendium of the OIE Global Conference on Rabies Control, Incheon-Seoul, 7-9 September 2011, Republic of Korea. Paris: OIE; 2012 pp. 31-44.
42. Vigilato MAN, Clavijo A, Knobl T, Silva HMT, Cosivi O, Schneider MC, et al. Progress towards eliminating canine rabies: policies and perspectives from Latin America and the Caribbean. Philos Trans R Soc Lond B Biol Sci. 2013;368:20120143.
43. Hampson K, Coudeville L, Lembo T, Sambo M, Kieffer A, Attlan M, et al. Estimating the global burden of endemic canine rabies. PLoS Negl Trop Dis. 2015;9:e0003709.
44. World Organization for Animal Health. Rabies; Chinese Taipei. Weekly disease information; July 18 2013. http://www.oie.int/wahis_2/public/wahid.php/Reviewreport/Review?page_refer=MapFullEventReport&reportid=13775
45. Weng HY, Wu PI, Yang PC, Tsai YL, Chang CC. A quantitative risk assessment model to evaluate effective border control measures for rabies prevention. Vet Res. 2010;41:1-11.
46. Chou CY WH, Yang jy, Tung HP, Wang HF. The first case report of imported rabies in 2012. Taiwan Epidemiology Bulletin.2013;29:30-1. Epub 2013/2/5.
47. Hsu YH, Cho LC, Wang LS, Chen LK, Lee JJ, Yang HH. Acute respiratory distress syndrome associated with rabies: a case report. Kaohsiung J Med Sci. 2006;22:94-98.
48. Tuan YC HM, Chuang MF, Lin HC, Tsai YY, Chen MJ, You CY, Chang CC. Investigation of the first reported rabies case in 2013. Taiwan Epidemiology Bulletin. 2013;29:201.
49. Bureau of Animal and Plant Health Inspection and Quarantine [Internet]. Taiwan: Results of rabies epidemics surveillance in 2016. http://www.baphiq.gov.tw/htmlarea_file/web_articles/baphiq/2628/Rabies%20ppt%201051229.pdf.
50. Chiou HY, Hsieh CH, Jeng CR, Chan FT, Wang HY, Pang VF. Molecular characterization of cryptically circulating rabies virus from ferret badgers, Taiwan. Emerg Infect Dis. 2014;20:790-798.
51. Tsai KJ, Hsu WC, Chuang WC, Chang JC, Tu YC, Tsai HJ, et al. Emergence of a sylvatic enzootic formosan ferret badger-associated rabies in Taiwan and the geographical separation of two phylogenetic groups of rabies viruses. Vet Microbiol. 2016;182:28-34.
52. Bernardi F, Gomes A, Richtzenhain L, Cortez A, Sakamoto S, Maiorka P. Biological and immunological studies of five Brazilian rabies virus isolates. Braz J Vet Res An Sci. 2005;42(4).
53. Morimoto K, Hooper DC, Carbaugh H, Fu ZF, Koprowski H, Dietzschold B. Rabies virus quasispecies: implications for pathogenesis. Proc Natl Acad Sci. 1998;95:3152-3156.
54. Rudd RJ, Trimarchi CV. Development and evaluation of an in vitro virus isolation procedure as a replacement for the mouse inoculation test in rabies diagnosis. J Clin Microbiol. 1989;27:2522-2528.
55. Lin YC, Chu PY, Chang MY, Hsiao KL, Lin JH, Liu HF. Spatial temporal dynamics and molecular evolution of re-emerging rabies virus in Taiwan. Int J Mol Sci. 2016;17(3):392.
56. Rudd RJ, Trimarchi CV, Abelseth MK. Tissue culture technique for routine isolation of street strain rabies virus. J Clin Microbiol. 1980;12:590-593.
57. Lodmell D. Genetic control of resistance to street rabies virus in mice. J Exp Med. 1983;157:451-460.
58. Wunderli PS, Dreesen DW, Miller TJ, Baer GM. Effect of heterogeneity of rabies virus strain and challenge route on efficacy of inactivated rabies vaccines in mice. Am J Vet Res. 2003;64:499-505.
59. Mani RS, Madhusudana SN. Laboratory diagnosis of human rabies: recent advances. ScientificWorldJournal. 2013; Article ID 569712.
60. Koprowski H. The mouse inoculation test. In: Meslin FX, Kaplan MM, Koprowski H editors. Laboratory Techniques in Rabies, 4th ed. Geneva: World Health Organization; 1996. pp. 80-86
61. Webster W, Casey G. Virus isolation in neuroblastoma cell culture. In: Meslin FX, Kaplan MM, Koprowski H editors. Laboratory techniques in rabies, 4th ed. Geneva: World Health Organization. 1996. pp. 93-104.
62. World Organisation for Animal Health. Rabies. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. Paris: OIE; 2013. pp. 1-28. http://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/2.01.17_RABIES.pdf.
63. Fooks AR, Johnson N, Freuling CM, Wakeley PR, Banyard AC, McElhinney LM, et al. Emerging technologies for the detection of rabies virus: challenges and hopes in the 21st century. PLoS Negl Trop Dis.. 2009;3(9):e530.
64. Panning M, Baumgarte S, Pfefferle S, Maier T, Martens A, Drosten C. Comparative analysis of rabies virus reverse transcription-PCR and virus isolation using samples from a patient infected with rabies virus. J Clin Microbiol. 2010;48:2960-2962.
65. Wacharapluesadee S, Hemachudha T. Ante-and post-mortem diagnosis of rabies using nucleic acid-amplification tests. Expert Rev Mol Diagn. 2010;10:207-218.
66. Black EM, Lowings JP, Smith J, Heaton PR, McElhinney LM. A rapid RT-PCR method to differentiate six established genotypes of rabies and rabies-related viruses using TaqMan™ technology. J Virol Methods. 2002;105:25-35.
67. Picard-Meyer E, Bruyere V, Barrat J, Tissot E, Barrat M, Cliquet F. Development of a hemi-nested RT-PCR method for the specific determination of European Bat Lyssavirus 1: comparison with other rabies diagnostic methods. Vaccine. 2004;22(15-16):1921-1929.
68. Dacheux L, Reynes J-M, Buchy P, Sivuth O, Diop BM, Rousset D, et al. A reliable diagnosis of human rabies based on analysis of skin biopsy specimens. Clin Infect Dis. 2008;47:1410-1417.
69. Smith J, McElhinney L, Parsons G, Brink N, Doherty T, Agranoff D, et al. Case report: rapid ante‐mortem diagnosis of a human case of rabies imported into the UK from the Philippines. J Med Virol. 2003;69:150-155.
70. Wacharapluesadee S, Hemachudha T. Urine samples for rabies RNA detection in the diagnosis of rabies in humans. Clin Infect Dis. 2002;34:874-875.
71. Cliquet F, Aubert M, Sagne L. Development of a fluorescent antibody virus neutralisation test (FAVN test) for the quantitation of rabies-neutralising antibody. J Immunol Methods. 1998;212:79-87.
72. Animal Health Research Institute. The full genome sequences of rabies virus from Formosan ferret badger in Taiwan; 2013. http://www.nvri.gov.tw/module/NewsContent/400/392.aspx?nid=%2bp7kpxBWWe0%3d&type=zO4l76wykT8%3d
73. Crepin P, Audry L, Rotivel Y, Gacoin A, Caroff C, Bourhy H. Intravitam diagnosis of human rabies by PCR using saliva and cerebrospinal fluid. J Clin Microbiol. 1998;36:1117-1121.
74. Macedo CI, Carnieli Jr P, Brandão PE, Rosa ES, Oliveira RdN, Castilho JG, et al. Diagnosis of human rabies cases by polymerase chain reaction of neck-skin samples. Braz J Infect Dis. 2006;10:341-345.
75. Zieger U. Diagnosis of Rabies via RT-PCR on Skin Samples of Wild and Domestic Animals. Open J Vet Med. 2015;5:191.
76. Hughes G, Smith J, Hanlon C, Rupprecht C. Evaluation of a TaqMan PCR assay to detect rabies virus RNA: influence of sequence variation and application to quantification of viral loads. J Clin Microbiol. 2004;42:299-306.
77. Wacharapluesadee S, Sutipanya J, Damrongwatanapokin S, Phumesin P, Chamnanpood P, Leowijuk C, et al. Development of a TaqMan real-time RT-PCR assay for the detection of rabies virus. J Virol Methods. 2008;151:317-320.
78. Hu R, Fooks A, Zhang S, Liu Y, Zhang F. Inferior rabies vaccine quality and low immunization coverage in dogs (Canis familiaris) in China. Epidemiol Infect. 2008;136:1556-1563.
79. Huang AS, Chen WC, Huang WT, Huang ST, Lo YC, Wei SH, et al. Public health responses to reemergence of animal rabies, Taiwan, July 16–December 28, 2013. PLoS One. 2015;10:e0132160.
80. Cliquet F, Aubert M. Elimination of terrestrial rabies in Western European countries. Dev Biol. 2004;119:185-204.
81. Mähl P, Cliquet F, Guiot A-L, Niin E, Fournials E, Saint-Jean N, et al. Twenty year experience of the oral rabies vaccine SAG2 in wildlife: a global review. Vet Res. 2014;45:77.
82. Lafay F, Bénéjean J, Tuffereau C, Flamand A, Coulon P. Vaccination against rabies: construction and characterization of SAG2, a double avirulent derivative of SADBern. Vaccine. 1994;12:317-320.
83. World Health Organization. WHO expert consultation on rabies-first report. Geneva: WHO. 2005.
84. World Health Organization. WHO expert consultation on rabies-second report. Geneva: WHO. 2013.
85. Cliquet F, Guiot A, Munier M, Bailly J, Rupprecht C, Barrat J. Safety and efficacy of the oral rabies vaccine SAG2 in raccoon dogs. Vaccine. 2006;24:4386-4392.
86. Cliquet F, Gurbuxani J, Pradhan H, Pattnaik B, Patil S, Regnault A, et al. The safety and efficacy of the oral rabies vaccine SAG2 in Indian stray dogs. Vaccine. 2007;25:3409-3418.
87. Schumacher CL, Coulon P, Lafay F, Benejean J, Aubert MF, Barrat J, et al. SAG-2 oral rabies vaccine. Onderstepoort J Vet Res. 1993;60: 459-462
88. European Medicines Agency. Rabigen SAG2, European Public Assessment Report. London: EMA; 2004.
89. Bingham J, Schumacher C, Hill F, Aubert A. Efficacy of SAG-2 oral rabies vaccine in two species of jackal (Canis adustus and Canis mesomelas). Vaccine. 1999;17:551-558.
90. Yakobson B, King R, David D, Sheichat N, Rotenderg D, Dveres N, et al. Comparative efficacy of two oral vaccines in captive jackals (Canis aureus). 10th Annual Rabies in the Americas meeting; San Diego: 1999.
91. Follmann EH, Ritter DG, Hartbauer DW. Oral vaccination of captive arctic foxes with lyophilized SAG2 rabies vaccine. J Wildl Dis. 2004;40:328-334.
92. Lambot M, Blasco E, Barrat J, Cliquet F, Brochier B, Renders C, et al. Humoral and cell-mediated immune responses of foxes (Vulpes vulpes) after experimental primary and secondary oral vaccination using SAG2 and V-RG vaccines. Vaccine. 2001;19:1827-1835.
93. Dean DJ, Abelseth MK, Atanasiu P. The fluorescent antibody test. In: Meslin FX, Kaplan MM, Koprowski H editors. Laboratory Techniques in Rabies, 4th ed. Geneva: World Health Organization; 1996. pp.59-68.
94. Hammami S, Schumacher CL, Cliquet F, Barrat J, Tlatli A, Osman RB, et al. Safety evaluation of the SAG2 rabies virus mutant in Tunisian dogs and several non-target species. Vet Res. 1999;30:353-362.
95. Bingham J, Schumacher C, Aubert M, Hill F, Aubert A. Innocuity studies of SAG-2 oral rabies vaccine in various Zimbabwean wild non-target species. Vaccine. 1997;15:937-943.
96. Orciari LA, Niezgoda M, Hanlon CA, Shaddock JH, Sanderlin DW, Yager PA, et al. Rapid clearance of SAG-2 rabies virus from dogs after oral vaccination. Vaccine. 2001;19:4511-4518.
97. World Health Organization. WHO expert committee on rabies-8th report. Geneva: WHO. 1992.
98. Rabies Vaccine, Live Virus, 9 C.F.R. Sect. 113.312 (2006).
99. Artois M, Cliquet F, Barrat J, Schumacher C. Effectiveness of SAG1 oral vaccine for the long-term protection of red foxes (Vulpes vulpes) against rabies. Vet Rec. 1997;140:57-58.
100. Hanlon CA, Niezgoda M, Morrill P, Rupprecht CE. Oral efficacy of an attenuated rabies virus vaccine in skunks and raccoons. J Wildl Dis. 2002;38:420-427.
101. Cliquet F, Sagne L, Schereffer J, Aubert M. ELISA test for rabies antibody titration in orally vaccinated foxes sampled in the fields. Vaccine. 2000;18:3272-3279.
102. Zhao J, Liu Y, Zhang S, Fang L, Zhang F, Hu R. Experimental Oral Immunization of Ferret Badgers (Melogale moschata) with a Recombinant Canine Adenovirus Vaccine CAV-2-E3Δ-RGP and an Attenuated Rabies Virus SRV9. J Wildl Dis. 2014;50:374-377.
103. Cliquet F, Guiot A, Schumacher C, Maki J, Cael N, Barrat J. Efficacy of a square presentation of V-RG vaccine baits in red fox, domestic dog and raccoon dog. Dev Biol. 2008;131:257-264.
104. Hanlon CA, Niezgoda M, Hamir AN, Schumacher C, Koprowski H, Rupprecht CE. First North American field release of a vaccinia-rabies glycoprotein recombinant virus. J Wildl Dis. 1998;34:228-239.
105. Robardet E, Demerson JM, Andrieu S, Cliquet F. First European interlaboratory comparison of tetracycline and age determination with red fox teeth following oral rabies vaccination programs. J Wildl Dis. 2012;48:858-868.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20028-
dc.description.abstract我國自民國 50 年起曾是狂犬病非疫區,然 102 年 7 月始發現鼬獾狂犬病病例,截至 106 年底為止共有鼬獾 623 例、白鼻心6 例、錢鼠 1 例、犬隻 1 例經診斷證實狂犬病陽性;已發表文獻之病毒演化分析顯示台灣鼬獾狂犬病病毒已形成一獨立分支,存在兩個基因族群 (與地形限制性相關地分為東部株及西部株),近期的病毒祖先可能出現在 100 年前。因應我國狂犬病疫情的浮現,本論文就三個面向進行研究探討或開發,目的為提供適合的防疫工具與策略方向,以控制與管理台灣鼬獾狂犬病疫情。第一個面向是以實驗室小鼠模式探討台灣鼬獾狂犬病病毒之病原性,其結果顯示我國鼬獾狂犬病病毒相較於一般典型的狂犬病病毒,在小鼠偵測之腦內接種力價相較於一般狂犬病病毒低、以常規的乳劑進行肌肉接種不會引起死亡;顯示該病毒相較於一般典型的狂犬病病毒對實驗小鼠的病原性較弱,可能暗示著台灣鼬獾狂犬病病毒跨物種感染的難度較高。第二個面向是為了強化我國監測系統之診斷能力,開發高敏感之定量即時聚合酶檢測技術以優化鼬獾狂犬病診斷,該技術是利用鼬獾耳朵作為樣材省去開顱骨取腦之人力及所需之高生物安全等級設備設施,且達到專一性、敏感性皆 100%。第三個面向是評估 WHO 推薦之野生動物狂犬病口服疫苗 SAG2 在鼬獾的應用性,試驗結果顯示 SAG2 疫苗對鼬獾具有良好的安全性以及可提供對抗台灣鼬獾狂犬病病毒的保護力。本論文上述三面項研究結果 (就病原性分析、診斷技術開發、口服疫苗評估) 可歸納目前我國鼬獾狂犬病病毒對非目標宿主病原性可能較弱,妥善應用監測措施及提高犬隻注射率策略應可有效管理,而本論文所開發之高敏感定量即時聚合酶檢測技術也利於監測工作實施,另未來在控制甚至撲滅鼬獾狂犬病上,本論文所探討的 SAG2 疫苗是理想的選擇之一。zh_TW
dc.description.abstractTaiwan had been considered rabies-free since 1961, however, in July of 2013, rabies cases was diagnosed among Formosan ferret badgers. Till the end of 2017, it was proved that there were totally 623 Formosan ferret badgers, 6 gem-faced civets, 1 dog and 1 Asian house shrew diagnosed as rabies-positive cases. Phylogenetic studies have indicated the presences of an independent cluster including two genetic groups (distinguished by the geographical locations; the TW-I group in the western part, and the TW-II in the eastern part) in Taiwan ferret badger rabies virus (RABV-TWFB), and the most recent common ancestor might originate 100 years previously. Reacting to the outbreak of the rabies epidemic, studies presented in this dissertation focuses on three aspects to study, investigate, and develop appropriate epidemic prevention strategies and tools for controlling and managing Taiwan ferret badger rabies. The first part is to elucidate the pathogenicity of RABV-TWFB in laboratory rodents, and the results showed compared to most typical rabies virus strains, RABV-TWFB displayed extremely low MICLD50 and failed to induce infection in rodents via intramuscular route. It can conclude RABV-TWFB is less virulent to experimental rodents than other typical RABV strains, and might imply the low cross-species transmission capability of RABV-TWFB. The second part of this dissertation is to develop a highly sensitive quantitative real-time RT-PCR assay to improve diagnosis of RABV-TWFB for strengthening the diagnosis capacity of national surveillance system for rabies. The assay we develop with 100% sensitivity and specificity does not need to be performed in facilities or with instruments complying with strict biosafety criteria, and is labor-saving as only ear specimens are sampled instead of traditional brain through skull-opening. The Third part is to evaluate the applications of WHO-recommended live oral rabies vaccine for wildlife, SAG2, on ferret badgers. The results demonstrated SAG2 is safe for ferret badgers, and vaccination of SAG2 can provide protections against RABV-TWFB. The achievements from three studies (the pathogenicity investigation, a development of diagnosis assay, and the evaluation of an oral live vaccine on ferret badgers) could come to these conclusions. First, RABV-TWFB might be probably less virulent to non-host species, and implementation of surveillance appropriately and increasing the vaccination rates in dog population could be bring up to effective management. Second, the real-time RT-PCR assay developed would benefit the surveillance measures of our country. Third, for the future control and even the elimination of Taiwan ferret badger rabies, SAG2 live vaccine assessed in this dissertation is one of the ideal options.en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:38:58Z (GMT). No. of bitstreams: 1
ntu-107-D00629001-1.pdf: 1225155 bytes, checksum: 0cf8c9be94c0c918e613d89fd6e9a2d6 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents誌謝.......................................................i
中文摘要...................................................ii
英文摘要(Abstract)........................................iii
Chapter 1 Introduction....................................1
1.1. Introduction of rabies and lyssaviruses..............1
Chapter 2 Pathogenicity of Taiwan ferret badger rabies virus in rodents ........................................ 6
2.1. Introduction ....................................... 6
2.2. Materials and methods .............................. 7
2.2.1. Virus source and preparation of virus suspension . 7
2.2.2. Animal ethics statements ......................... 7
2.2.3. In vivo virus titration in mice and hamsters...... 8
2.2.4. In vitro virus titration in BHK-21 and N2a cells . 8
2.2.5. Viral passages in mice ............................9
2.2.6. Mice challenge with intramuscular route........... 9
2.3. Results ............................................ 9
2.3.1. RABV-TWFB showed low MICLD50 titers, and undetermined TCID50 titers in the cell culture........... 9
2.3.2. All RABV-TWFB strains showed similar mortality development in intracranial inoculation ................ 10
2.3.3. Titrations of TWFB-E-br in different experimental rodents showed similar MICLD50 values, but different rodents had a dissimilar mortality development after intracranial inoculation of TWFB-E-br .................. 10
2.3.4. TWFB-E-br3 caused death in mice when applied intramuscularly, whereas undiluted TWFB-E-sg and TWFB-E-br did not........;;;;;;;;;;;;;;;;;;;;;.................... 11
2.4. Discussion ........................................ 11
Chapter 3 Development of a quantitative real-time RT-PCR assay for detecting Taiwan ferret badger rabies virus in ear tissue of ferret badgers and mice .................. 15
3.1. Introduction ...................................... 15
3.2. Materials and methods ............................. 16
3.2.1. Animal specimen sources and ethics statements ... 16
3.2.2. Rabies virus inoculations ....................... 17
3.2.3. Tissue suspension and RNA preparation ........... 17
3.2.4. Primer and probe designs......................... 18
3.2.5. Plasmid construction and generation of RNA standards ...............................................19
3.2.6. Detection and quantification of RABV-TWFB RNA through one-step real-time RT-PCR....................... 20
3.2.7. Data analysis ................................... 21
3.3. Results ........................................... 22
3.3.1. Multiple alignments of published sequences .......22
3.3.2. Standard curve creation, LOD determination, and comparing the dedicated standard curve with the regression lines with the background containing PCR inhibitors..... 23
3.3.3. Sensitivity and specificity of the real-time RT-PCR assay................................................... 23
3.3.4. Quantification and comparison of RNA copies of RABV-TWFB derived from brain and ear specimens from positive ferret badgers.......................................... 24
3.4. Discussion ........................................ 25
Chapter 4 Safety, efficacy and immunogenicity evaluation of the SAG2 oral rabies vaccine in Formosan ferret badgers. 28
4.1. Introduction ...................................... 28
4.2. Materials and methods ............................. 29
4.2.1. Vaccine virus and challenge virus ............... 29
4.2.2. Animal ethics and husbandry...................... 30
4.2.3. Animals used and group allocation................ 31
4.2.4. Vaccine administration virus and animal challenge............................................... 31
4.2.5. Clinical observation ............................ 32
4.2.6. Rabies virus neutralising antibodies ............ 32
4.2.7. Examination of SAG2 virus in saliva ............. 33
4.2.8. Post mortem examination ......................... 34
4.2.9. Data analysis and statistics .................... 34
4.3. Results ........................................... 35
4.3.1. Safety of SAG2 in Formosan ferret badgers........ 35
4.3.2. Efficacy of SAG2 in Formosan ferret badgers...... 36
4.4. Discussion ........................................ 37
Chapter 5 Conclusion ................................... 44
References ............................................. 66
Appendix-Curriculum Vitae and publication list of Ai-Ping Hsu..................................................... 78
dc.language.isoen
dc.title台灣鼬獾狂犬病之診斷、病原性及疫苗免疫評估zh_TW
dc.titleThe Diagnosis, Pathogenicity and Vaccine Assessment of Taiwan Ferret Badger Rabiesen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree博士
dc.contributor.oralexamcommittee潘銘正(Ming-Jeng Pan),周崇熙(Chung-Hsi Chou),張紹光(Shao-Kuang Chang),周濟眾(Chi-Chung Chou),張伯俊(Poa-Chun Chang)
dc.subject.keyword狂犬病,台灣鼬獾狂犬病,病原性,狂犬病診斷,即時聚合?鏈鎖反應,SAG2,狂犬病口服活毒疫苗,zh_TW
dc.subject.keywordRabies,Taiwan ferret badger rabies,Pathogenicity,Rabies diagnosis,Real-time RT-PCR,SAG2,Rabies oral live vaccine,en
dc.relation.page79
dc.identifier.doi10.6342/NTU201800753
dc.rights.note未授權
dc.date.accepted2018-07-09
dc.contributor.author-college獸醫專業學院zh_TW
dc.contributor.author-dept獸醫學研究所zh_TW
顯示於系所單位:獸醫學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
1.2 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved