請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20019
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳少傑 | |
dc.contributor.author | Yuei-Zheng Lin | en |
dc.contributor.author | 林岳徵 | zh_TW |
dc.date.accessioned | 2021-06-08T02:38:51Z | - |
dc.date.copyright | 2018-07-19 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-07-11 | |
dc.identifier.citation | REFERENCE
[1] D.A. Benson, K.M. Ilene, D.J. Lipman, J. Ostell, and D.L. Wheeler, 'GenBank,' Journal of Nucleic Acids Research, vol. 35, no. 47, pp. D21-D25, Dec. 2007. [2] P. Zhang, G. Tan, and G.R. Gao, 'Implementation of the Smith Waterman Algorithm on a Reconfigurable Supercomputing Platform, ' in Proceedings of ACM Conference on High-performance Reconfigurable Computing Technology and Applications, vol. 12, no. 8, pp. 39-48, Sep. 2007. [3] O. Storassli and D. Strenski, 'Experiences on 64 and 150 FPGA Systems,' in Proceedings of the Fourth Annual Reconfigurable Systems Summer Institute, vol. 26, no. 7, pp. 254-273, Feb. 2008. [4] W. Liu, B. Schmidt, G. Voss, and W. Muller-Writing, 'Streaming Algorithms for Biological Sequence Alignment on GPUs,' IEEE Transactions on Parallel and Distributed Systems, vol. 18, no. 9, pp. 1270-1281, Jun. 2007. [5] A. Sarje, and S. Aluru, 'Parallel Biological Sequence Alignments on the Cell Broadband Engine,' in Proceedings of IEEE International Symposium on Parallel and Distributed Processing Symp., vol. 279, no. 13, pp. 1-11, Feb. 2008. [6] O. Gotoh, 'An Improved Algorithm for Matching Biology Sequences,' Journal of Molecular Biology, vol. 162, no. 3, pp. 705-708, Dec. 1982. [7] T. Smith and M. Waterman, 'Identification of Common Molecular Subsequences,' Journal of Molecular Biology, vol. 97, no. 68, pp. 195-197, Feb. 1981. [8] A. Boukerche, J.M. Correa, A. Melo, and R.P. Jacobi, 'A Hardware Accelerator for the Fast Retrieval of DIALIGN Biological Sequence Alignments in Linear Space,' IEEE Transactions on Computers, vol. 59, no. 6, pp. 808-821 Jun. 2010. [9] B. Morgenstern, K. Frech, A. Dress, and T. Werner, 'DIALIGN: Finding Local Similarities by Multiple Sequence Alignment,' Journal of Bioinformatics, vol. 14, no. 3, pp. 290-294, Mar. 1998. [10] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman, 'Basic Local Alignment Search Tool,' Journal of Molecular Biology, vol. 73, no. 13, pp.403-410, Oct. 1990. [11] S. Rajko and S. Aluru, 'Space and Time Optimal Parallel Sequence Alignments,' IEEE Transactions on Parallel and Distributed Systems, vol. 15, no. 12, pp. 1070-1081, Dec. 2004. [12] C.W. Yu, K.H. Kwong, K.H. Lee, and P.H.W. Leong, 'A Smith-Waterman Systolic Cell,' in Proceedings of the International Conference on Field Programmable Logic and Applications, vol. 145, no. 32, pp.375-384, May 2003. [13] X. Jiang, X. Liu, L. Xu, P. Zhang, and N. Sun, 'A Reconfigurable Accelerator for Smith-Waterman Algorithm, ' IEEE Transactions on Circuits and Systems II, vol. 54, no. 12, pp. 1077-1081, Jun. 2007. [14] S. Aluru, N. Futamura, and K. Mehrotra, 'Parallel Biological Sequence Comparison Using Prefix Computations,' ACM Journal of parallel and Distributed Computing, vol. 63, no. 3, suppl 1, pp. 264-272, Mar. 2003. [15] X.L. Wu, Y. Heo, I. El Haji, W.M. Hwu, D. Chen, and J. Ma, “TIGER: Tiled Iterative Genome Assembler,” BMC Bioinformatics, vol. 13, no. 18, suppl 19, pp. 290-294, Dec. 2012. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20019 | - |
dc.description.abstract | 本論文提出一個專門針對生物基因定序(DNA Sequencing)應用軟體TIGER (Tiled Iterative Genome Assembler and Approximate Multi-Genome Aligner)中的基因比對(Alignment)流程改良的硬體加速電路設計。有鑑於生物醫學的研究與發展、次世代定序(Next Generation Sequencing)技術的發明,使得基因定序技術在近年來已有相當大幅度地突破,現今的基因定序應用軟體以由UIUC 所發展的TIGER 基因體分析工具包較為著名,並在生物醫學領域被廣泛研究使用。然而這類軟體仍存在著許多先天上的不足之處,例如:執行效能受限於其軟體開發環境、部份功能的演算法效率不佳等,因此亟需以另一種方式實現TIGER以解決上述問題。
在本論文中我們會改善比對軟體的演算法並以軟體語言(C++)以及硬體描述語言(Verilog HDL)對TIGER中的基因序列比對流程進行重新設計:包含簡化流程中的演算法並降低運算複雜度、使用平行化的硬體架構達到加速目的;並在硬體描述語言上,透過 Field Programmable Gate Array (FPGA)驗證我們的設計。 | zh_TW |
dc.description.abstract | This Thesis presents a hardware acceleration design which specifically aims to speed up the alignment flow in the Tiled Sequential Genome Assembler and Approximate Multi-Genome Aligner. In the research and development of biomedicine, the invention of Next Generation Sequencing technology has led to a considerable breakthrough in gene sequencing technology in recent years. Nowadays, the TIGER Genome Analysis Toolkit developed by UIUC is a well known and widely used sequencing application software. However, there are still many inherent deficiencies in this kind of software. For example, the execution performance is limited by its software development environment and the use of inefficient algorithms in some functions. Therefore, it is urgent to implement TIGER in a better way to solve the above problem.
In this Thesis, we use software language (C ++) and hardware description language (Verilog HDL) to redesign the TIGER genome sequence alignment process. We improve the algorithm used in alignment process and reduce the complexity of its parallel hardware architecture such that we can achieve acceleration by programming hardware description language on a Field Programmable Gate Array (FPGA) board. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T02:38:51Z (GMT). No. of bitstreams: 1 ntu-107-R04943133-1.pdf: 1904074 bytes, checksum: f4b839f6fb657a744ce9c956efb31235 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | TABLE OF CONTENTS
ABSTRACT i TABLE OF CONTENTS iii LIST OF FIGURES v LIST OF TABLES vii CHAPTER 1 INTRODUCTION 1 1.1 Motivation 1 1.2 Thesis Organization 2 CHAPTER 2 BACKGROUND 3 2.1 Biological Sequence Alignment 3 2.1.1 Needleman-Wunsch Algorithm……….……….. 3 2.1.2 Smith-Waterman Algorithm 5 2.2 DIALIGN Algorithm 7 2.3 Heuristic Algorithm 8 2.3.1 Basic Local Alignment Search Tool 8 2.4 Hardware Accelerators 10 2.4.1 The Anti-Diagonal Algorithm 10 2.4.2 The Parallel Prefix Algorithm 13 2.5 Algorithm and Procedure of TIGER 13 CHAPTER 3 ARCHITECTURE AND CIRCUIT DESIGN 17 3.1 Hybrid Co-Design Platform 17 3.1.1 Encoder 19 3.1.2 Parallelization 20 CHAPTER 4 SIMULATION AND EXPERIMENT RESULTS 21 4.1 Software Profiling 22 4.2 Software Simulation Results 26 4.3 Hardware Simulation Results 27 4.4 Overall Simulation Results on Hybrid Architecture 28 CHAPTER 5 CONCLUSIONS 31 REFERENCE 33 | |
dc.language.iso | en | |
dc.title | Tiger基於字元基因序列比對硬體加速器 | zh_TW |
dc.title | Tiger Word-Based Aligner Hardware Accelerator | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳倩喻,趙坤茂,盧奕璋 | |
dc.subject.keyword | 基因定序,場效可程式化陣列,硬體加速器,基於字元序列比對, | zh_TW |
dc.subject.keyword | alignment,FPGA,hardware accelerator,Tiger,word-based, | en |
dc.relation.page | 34 | |
dc.identifier.doi | 10.6342/NTU201801431 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2018-07-11 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
顯示於系所單位: | 電子工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 1.86 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。