Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20009
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林俊彬(Chun-Pin Lin)
dc.contributor.authorYi-Chieh Hsiaoen
dc.contributor.author蕭以潔zh_TW
dc.date.accessioned2021-06-08T02:38:43Z-
dc.date.copyright2018-08-01
dc.date.issued2018
dc.date.submitted2018-07-15
dc.identifier.citation1. Karpiński TM and Szkaradkiewicz AK, Microbiology of dental caries. J Biol Earth Sci 2013. 3(1): p. M21-M24.
2. Petersen PE, Oral Health. , in International Encyclopedia of Public Health, K. Heggenhougen and S. Quah, Editors. 2008, Elsevier. p. 677-685.
3. Newburn E, Effectiveness of water fluoridation. J Publc Health Dent, 1989. 49: p. 279-289.
4. Kaste LM SR, Oldakowiski RJ, Coronal caies in primary and permanent dentition of children and adolescents 1-17 year of age: United States 1988-1991. J Dent Res, 1996. 75: p. 631-641.
5. Sreedevi A and Mohamed S. Sealants, Pit and Fissure. [Updated 2017 Oct 5], in StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2017 Jun-.Available from: https://www.ncbi.nlm.nih.gov/books/NBK448116/.
6. Simonsen RJ, Pit and fissure sealant: review of the literature. Pediatr Dent, 2002. 24(5): p. 393-414.
7. Celiberti P and Lussi A, Penetration ability and microleakage of a fissure sealant applied on artificial and natural enamel fissure caries. J Dent, 2007. 35(1): p. 59-67.
8. Nagano T, Relation between the form of pit and fissure and the primary lesion of caries. Dent Abstr, 1961. 6: p. 426.
9. Naaman R, El-Housseiny AA, and Alamoudi N, The Use of Pit and Fissure Sealants-A Literature Review. Dent J (Basel), 2017. 5(4).
10. Babu G, Mallikarjun S, Wilson B, and Premkumar C, Pit and fissure sealants in pediatric dentistry. SRM Journal of Research in Dental Sciences, 2014. 5(4): p. 253-257.
11. Fleisch AF, Sheffield PE, Chinn C, Edelstein BL, and Landrigan PJ, Bisphenol A and Related Compounds in Dental Materials. Pediatrics, 2010. 126(4): p. 760-768.
12. Lemon Marianela T, Jones Melissa S, and Stansbury Jeffrey W, Hydrogen bonding interactions in methacrylate monomers and polymers. Journal of Biomedical Materials Research Part A, 2007. 83A(3): p. 734-746.
13. Polydorou O, Konig A, Hellwig E, and Kummerer K, Urethane dimethacrylate: a molecule that may cause confusion in dental research. J Biomed Mater Res B Appl Biomater, 2009. 91(1): p. 1-4.
14. Atai M, Ahmadi M, Babanzadeh S, and Watts DC, Synthesis, characterization, shrinkage and curing kinetics of a new low-shrinkage urethane dimethacrylate monomer for dental applications. Dental Materials. 23(8): p. 1030-1041.
15. Alexander JW, History of the medical use of silver. Surg Infect (Larchmt), 2009. 10(3): p. 289-92.
16. Gao SS, Zhao IS, Duffin S, Duangthip D, Lo ECM, and Chu CH, Revitalising Silver Nitrate for Caries Management. Int J Environ Res Public Health, 2018. 15(1).
17. Lan WH, Efficacy of ammoniacal silver nitrate in root canal therapy. Bull Tokyo Med Dent Univ, 1977. 24(2): p. 169-76.
18. Englander HR, James VE, and Massler M, Histologic effects of silver nitrate of human dentin and pulp. J Am Dent Assoc, 1958. 57(5): p. 621-30.
19. Burgess JO and Vaghela PM, Silver Diamine Fluoride: A Successful Anticarious Solution with Limits. Adv Dent Res, 2018. 29(1): p. 131-134.
20. Chu CH, Mei L, Seneviratne CJ, and Lo EC, Effects of silver diamine fluoride on dentine carious lesions induced by Streptococcus mutans and Actinomyces naeslundii biofilms. Int J Paediatr Dent, 2012. 22(1): p. 2-10.
21. Clement JL and Jarrett PS, antibacterial silver. Met Based Drugs., 1994. 1(5-6): p. 467–482.
22. Correa JM, Mori M, Sanches HL, da Cruz AD, Poiate E, Jr., and Poiate IA, Silver nanoparticles in dental biomaterials. Int J Biomater, 2015. 2015: p. 485275.
23. Kedziora A, Speruda M, Krzyzewska E, Rybka J, Lukowiak A, and Bugla-Ploskonska G, Similarities and Differences between Silver Ions and Silver in Nanoforms as Antibacterial Agents. Int J Mol Sci, 2018. 19(2).
24. Iravani S, Korbekandi H, Mirmohammadi SV, and Zolfaghari B, Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci, 2014. 9(6): p. 385-406.
25. Chen M, Feng YG, Wang X, Li TC, Zhang JY, and Qian DJ, Silver nanoparticles capped by oleylamine: formation, growth, and self-organization. Langmuir, 2007. 23(10): p. 5296-304.
26. Chen S-F and Zhang H, Aggregation kinetics of nanosilver in different water conditions. Adv. Nat. Sci. Nanosci. Nanotechnol, 2012. 3(3).
27. Dang TMD, Le TTT, Fribourg-Blanc E, and Dang MC, Influence of surfactant on the preparation of silver nanoparticles by polyol method. Adv. Nat. Sci. Nanosci. Nanotechnol, 2012. 3(3).
28. Tran QH, Nguyen VQ, and Le A-T, Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv. Nat. Sci. Nanosci. Nanotechnol, 2013. 4(3).
29. Suresh AK, Pelletier DA, Wang W, Moon JW, Gu B, Mortensen NP, Allison DP, Joy DC, Phelps TJ, and Doktycz MJ, Silver nanocrystallites: biofabrication using Shewanella oneidensis, and an evaluation of their comparative toxicity on gram-negative and gram-positive bacteria. Environ Sci Technol, 2010. 44(13): p. 5210-5.
30. Sintubin L, De Windt W, Dick J, Mast J, van der Ha D, Verstraete W, and Boon N, Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl Microbiol Biotechnol, 2009. 84(4): p. 741-9.
31. Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, and Venketesan R, Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine, 2010. 6(1): p. 103-9.
32. Ahn SJ, Lee SJ, Kook JK, and Lim BS, Experimental antimicrobial orthodontic adhesives using nanofillers and silver nanoparticles. Dent Mater, 2009. 25(2): p. 206-13.
33. das Neves PB, Agnelli JA, Kurachi C, and de Souza CW, Addition of silver nanoparticles to composite resin: effect on physical and bactericidal properties in vitro. Braz Dent J, 2014. 25(2): p. 141-5.
34. Kim JS, Kuk E, Yu KN, Kim J-H, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang C-Y, Kim Y-K, Lee Y-S, Jeong DH, and Cho M-H, Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine. 3(1): p. 95-101.
35. Siddhartha S, Tanmay B, Arnab R, Gajendra S, Ramachandrarao P, and Debabrata D, Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology, 2007. 18(22): p. 225103.
36. Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PK, Chiu JF, and Che CM, Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem, 2007. 12(4): p. 527-34.
37. Espinosa-Cristóbal LF, Martínez-Castañón GA, Martínez-Martínez RE, Loyola-Rodríguez JP, Patiño-Marín N, Reyes-Macías JF, and Ruiz F, Antibacterial effect of silver nanoparticles against Streptococcus mutans. Materials Letters, 2009. 63(29): p. 2603-2606.
38. Sondi I and Salopek-Sondi B, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science, 2004. 275(1): p. 177-182.
39. Dakal TC, Kumar A, Majumdar RS, and Yadav V, Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles. Front Microbiol, 2016. 7: p. 1831.
40. Prabhu S and Poulose EK, Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. International Nano Letters, 2012. 2(1): p. 32.
41. AshaRani PV, Low Kah Mun G, Hande MP, and Valiyaveettil S, Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano, 2009. 3(2): p. 279-90.
42. Park MV, Neigh AM, Vermeulen JP, de la Fonteyne LJ, Verharen HW, Briede JJ, van Loveren H, and de Jong WH, The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials, 2011. 32(36): p. 9810-7.
43. Martinez-Gutierrez F, Thi EP, Silverman JM, de Oliveira CC, Svensson SL, Vanden Hoek A, Sanchez EM, Reiner NE, Gaynor EC, Pryzdial EL, Conway EM, Orrantia E, Ruiz F, Av-Gay Y, and Bach H, Antibacterial activity, inflammatory response, coagulation and cytotoxicity effects of silver nanoparticles. Nanomedicine, 2012. 8(3): p. 328-36.
44. ARELLANO-CARDENAS S, GALLARDO-VELAZQUEZ T, and OSORIO-REVILLA G, Study of the surface charge of a Porous Clay Heterostructure (PCH) and its adsorption capacity of alkaline metals. J. Mex. Chem. Soc [online]. , 2010. 54(2): p. 92-97.
45. Kahr G and Madsen FT, Determination of the cation exchange capacity and the surface area of bentonite, illite and kaolinite by methylene blue adsorption. Applied Clay Science, 1995. 9(5): p. 327-336.
46. Voorn DJ, Ming W, and van Herk AM, Encapsulation of Platelets by Physical and Chemical Approaches. Macromolecular Symposia, 2007. 245-246(1): p. 584-590.
47. Tseng C-R, Wu J-Y, Lee H-Y, and Chang F-C, Preparation and crystallization behavior of syndiotactic polystyrene–clay nanocomposites. Polymer, 2001. 42(25): p. 10063-10070.
48. in https://www.kunimine.co.jp/english/bent/basic.html.
49. Lin J-J, Chu C-C, Chiang M-L, and Tsai W-C, First Isolation of Individual Silicate Platelets from Clay Exfoliation and Their Unique Self-Assembly into Fibrous Arrays. The Journal of Physical Chemistry B, 2006. 110(37): p. 18115-18120.
50. Chiu C-W, Chu C-C, Cheng W-T, and Lin J-J, Exfoliation of smectite clays by branched polyamines consisting of multiple ionic sites. European Polymer Journal, 2008. 44(3): p. 628-636.
51. Chou C-C and Lin J-J, One-Step Exfoliation of Montmorillonite via Phase Inversion of Amphiphilic Copolymer Emulsion. Macromolecules, 2005. 38(2): p. 230-233.
52. Lin J-J and Chen Y-M, Amphiphilic Properties of Poly(oxyalkylene)amine-Intercalated Smectite Aluminosilicates. Langmuir, 2004. 20(10): p. 4261-4264.
53. Li PR, Wei JC, Chiu YF, Su HL, Peng FC, and Lin JJ, Evaluation on cytotoxicity and genotoxicity of the exfoliated silicate nanoclay. ACS Appl Mater Interfaces, 2010. 2(6): p. 1608-13.
54. Wang Y-C, Huang T-K, Tung S-H, Wu T-M, and Lin J-J, Self-assembled clay films with a platelet–void multilayered nanostructure and flame-blocking properties. Scientific Reports, 2013. 3: p. 2621.
55. Dong R-X, Chou C-C, and Lin J-J, Synthesis of immobilized silver nanoparticles on ionic silicate clay and observed low-temperature melting. Journal of Materials Chemistry, 2009. 19(15): p. 2184-2188.
56. Praus P, Turicová M, and Klementová M, Preparation of silver-montmorillonite nanocomposites by reduction with formaldehyde and borohydride. Journal of the Brazilian Chemical Society, 2009. 20: p. 1351-1357.
57. Praus P, Turicová M, and Valásková M, Study of silver adsorption on montmorillonite. Journal of the Brazilian Chemical Society, 2008. 19: p. 549-556.
58. Liu J, Lee J-B, Kim D-H, and Kim Y, Preparation of high concentration of silver colloidal nanoparticles in layered laponite sol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007. 302(1): p. 276-279.
59. Su H-L, Chou C-C, Hung D-J, Lin S-H, Pao IC, Lin J-H, Huang F-L, Dong R-X, and Lin J-J, The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay. Biomaterials, 2009. 30(30): p. 5979-5987.
60. Wei J-C, Yen Y-T, Wang Y-T, Hsu S-h, and Lin J-J, Enhancing silver nanoparticle and antimicrobial efficacy by the exfoliated clay nanoplatelets. RSC Advances, 2013. 3(20): p. 7392-7397.
61. Lin J-J, Lin W-C, Li S-D, Lin C-Y, and Hsu S-h, Evaluation of the Antibacterial Activity and Biocompatibility for Silver Nanoparticles Immobilized on Nano Silicate Platelets. ACS Applied Materials & Interfaces, 2013. 5(2): p. 433-443.
62. Luo YL, Zhang CH, Xu F, and Chen YS, Novel THTPBA/PEG‐derived highly branched polyurethane scaffolds with improved mechanical property and biocompatibility. Polymers for Advanced Technologies, 2011. 23(3): p. 551-557.
63. Simon D, Borreguero AM, de Lucas A, and Rodriguez JF, Recycling of polyurethanes from laboratory to industry, a journey towards the sustainability. Waste Manag, 2018.
64. Bezwada RS, Absorbable Polyurethanes, in Biomaterials. 2010. p. 137-158.
65. Black EME, Polyurethane research for applications in the eld of dentistry: Limiting side reactions in monomer development and synthesizing N-capped polymenthide, in Honors Theses. 2015, College of Saint Benedict and Saint John’s University.
66. Petrović ZS and Ferguson J, Polyurethane elastomers. Progress in Polymer Science, 1991. 16(5): p. 695-836.
67. Ranganathan N, Materials Characterization: Modern Methods and Applications. 2015: Taylor & Francis. 120.
68. Luo S, Zhu W, Liu F, and He J, Preparation of a Bis-GMA-Free Dental Resin System with Synthesized Fluorinated Dimethacrylate Monomers. International Journal of Molecular Sciences, 2016. 17(12): p. 2014.
69. Barszczewska-Rybarek IM, Characterization of urethane-dimethacrylate derivatives as alternative monomers for the restorative composite matrix. Dent Mater, 2014. 30(12): p. 1336-44.
70. Cook WD, Photopolymerization kinetics of dimethacrylates using the camphorquinone/amine initiator system. Polymer, 1992. 33(3): p. 600-609.
71. Vaidyanathan TK, Vaidyanathan J, Lizymol PP, Ariya S, and Krishnan KV, Study of visible light activated polymerization in BisGMA-TEGDMA monomers with Type 1 and Type 2 photoinitiators using Raman spectroscopy. Dental Materials, 2017. 33(1): p. 1-11.
72. Irinoda Y, Matsumura Y, Kito H, Nakano T, Toyama T, Nakagaki H, and Tsuchiya T, Effect of sealant viscosity on the penetration of resin into etched human enamel. Oper Dent, 2000. 25(4): p. 274-82.
73. Aranha AMF, Effects of light-curing time on the cytotoxicity of a restorative. 2010. 18(5): p. 461-6.
74. Kleinsasser NH, Schmid K, Sassen AW, Harréus UA, Staudenmaier R, Folwaczny M, Glas J, and Reichl F-X, Cytotoxic and genotoxic effects of resin monomers in human salivary gland tissue and lymphocytes as assessed by the single cell microgel electrophoresis (Comet) assay. Biomaterials, 2006. 27(9): p. 1762-1770.
75. Galvão MR, Caldas SGFR, Bagnato VS, de Souza Rastelli AN, and de Andrade MF, Evaluation of degree of conversion and hardness of dental composites photo-activated with different light guide tips. European Journal of Dentistry, 2013. 7(1): p. 86-93.
76. Zhang L, Tam KC, Gan LH, Yue CY, Lam YC, and Hu X, Effect of nano‐silica filler on the rheological and morphological properties of polypropylene/liquid‐crystalline polymer blends. Journal of Applied Polymer Science, 2002. 87(9): p. 1484-1492.
77. Chi T-Y, Yeh H-Y, Lin J-J, Jeng US, and Hsu S-h, Amphiphilic silver-delaminated clay nanohybrids and their composites with polyurethane: physico-chemical and biological evaluations. Journal of Materials Chemistry B, 2013. 1(16): p. 2178-2189.
78. Mehrabkhani M, Mazhari F, Sadeghi S, and Ebrahimi M, Effects of sealant, viscosity, and bonding agents on microleakage of fissure sealants: An in vitro study. European Journal of Dentistry, 2015. 9(4): p. 558-563.
79. Bolzan Agnelli das Neves P, Wesley Oliveira de Souza C, and Loshchagin Pizzolitto E, In vitro reduction of Streptococcus mutans biofilm on silver nanoparticle-modified composite resin. RSBO Revista Sul-Brasileira de Odontologia, 2014. 11(4): p. 360-368.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20009-
dc.description.abstract本研究製備奈米矽片銀聚氨酯複合材料作為牙科窩隙封劑。實驗分成三個部分:一、首先針對聚氨酯丙烯酸酯(UA),添加適當比例的稀釋單體(TPGDA)與光起始劑(CQ和EDMAB),製備出具有良好流動性與聚合程度的聚氨酯樹脂基質;二、測試冷凍乾燥後的奈米矽片銀,對轉糖鏈球菌的抗菌效果;三、以聚氨酯樹脂基質、矽烷化二氧化矽及奈米矽片銀製備奈米矽片銀聚氨酯複合材料,測試其機械物理性質、生物相容性和抗菌活性。結果顯示50:50 UA/TPGDA能夠得到臨床上可接受的流動性,而光起始劑CQ/EDMAB分別以1/2 phr的比例添加至50:50 UA/TPGDA中,可得到適當的轉化率、聚合深度和交聯程度;而冷凍乾燥後的奈米矽片銀乃具有極佳之抗菌活性,僅需10 ppm即可對轉糖鏈球菌達完全的抗菌效果;奈米矽片銀聚氨酯複合材料在銀濃度為300 ppm時,具有臨床上可接受的機械物理性質和良好的生物相容性,且相對於未添加奈米矽片銀的對照組,其菌量減少為55.82%,顯示奈米矽片銀聚氨酯複合材料具有抗菌效果。然而奈米矽片銀於樹脂中的分散性不佳,可能降低其抗菌活性,因此未來研究應朝此方向著手改良。zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-08T02:38:43Z (GMT). No. of bitstreams: 1
ntu-107-R04422011-1.pdf: 4559958 bytes, checksum: f2d758358ea8f280311f73fb415cd009 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract iv
目 錄 vi
圖目錄 xi
表目錄 xiii
第一章 文獻回顧 1
1.1 齲齒的形成 1
1.2 現今齲齒盛生率與表現狀況 1
1.3 牙齒窩隙之形態 2
1.4 窩隙封劑之文獻回顧 3
1.5 含銀製劑的臨床應用 5
1.6 奈米銀 7
1.7 黏土與奈米矽片 10
1.8 奈米矽片銀 12
1.9 聚氨酯樹脂 14
1.9.1 聚氨基甲酸酯 14
1.9.2 聚氨酯丙烯酸酯樹脂 15
1.9.3 光起始劑 15
第二章 實驗動機與目的 17
第三章 實驗材料與方法 18
3.1 實驗架構與流程圖 18
3.2 實驗材料 19
3.3 實驗儀器 21
3.4 聚氨酯樹脂基質之製備 22
3.4.1 聚氨酯丙烯酸酯(UA)之合成 22
3.4.2 稀釋劑的添加與黏稠度測試 24
3.4.3 光起始劑的添加與聚合程度分析 24
3.4.3.1 光起始劑的添加 24
3.4.3.2 轉化率 25
3.4.3.3 聚合深度 27
3.4.3.4 交聯程度 27
3.5 奈米矽片銀之抗菌測試 28
3.5.1 菌株特性與來源 28
3.5.2 菌株培養及保存方法 28
3.5.3 菌液吸光值與濃度關係 29
3.5.4 抗菌測試 29
3.6 奈米矽片銀聚氨酯複合材料製備 30
3.6.1 二氧化矽的矽烷化處理 30
3.6.2 複合材料的製備 31
3.7 奈米矽片銀聚氨酯複合材料的機械物理性質 31
3.7.1 聚合深度 31
3.7.2 表面硬度 31
3.7.3 抗壓強度 32
3.7.4 流動性比較 33
3.8 奈米矽片銀聚氨酯複合材料之生物相容性測試 33
3.8.1 3T3細胞培養 
 33
3.8.2 實驗樣本與萃取液製備 34
3.8.3 細胞存活率分析 35
3.8.4 細胞毒性測試 36
3.9 奈米矽片銀聚氨酯複合材料之抗菌測試 38
3.9.1 抗菌測試 38
3.9.2 細菌形態觀察 40
3.10 數據統計與分析方法 41
第四章 實驗結果 42
4.1 聚氨酯樹脂基質之製備 42
4.1.1 稀釋劑的添加與黏稠度測試 42
4.1.2 光起始劑的添加與聚合程度分析 42
4.1.2.1 轉化率 42
4.1.2.2 聚合深度 43
4.1.2.3 交聯程度 44
4.2 奈米矽片銀之抗菌測試 46
4.2.1 菌液吸光值與濃度的關係 46
4.2.2 抗菌測試 47
4.3 奈米矽片銀聚氨酯複合材料的機械物理性質 47
4.3.1 聚合深度 47
4.3.2 表面硬度 48
4.3.3 抗壓強度 49
4.3.4 流動性比較 50
4.4 奈米矽片銀聚氨酯複合材料的生物相容性 51
4.4.1 細胞存活率分析 51
4.4.2 細胞毒性 52
4.5 奈米矽片銀聚氨酯複合材料之抗菌測試 53
4.5.1 抗菌測試 53
4.5.2 細菌形態觀察 53
第五章 討論 55
5.1 聚氨酯樹脂基質之製備 55
5.1.1 稀釋劑的添加與黏稠度測試 55
5.1.2 光起始劑的添加與聚合程度分析 55
5.2 奈米矽片銀之抗菌測試 56
5.3 奈米矽片銀聚氨酯複合材料的機械物理性質 57
5.3.1 聚合深度 57
5.3.2 表面硬度 57
5.3.3 抗壓強度 58
5.3.4 流動性比較 59
5.4 奈米矽片銀聚氨酯複合材料的生物相容性 60
5.5 奈米矽片銀聚氨酯複合材料之抗菌測試 60
第六章 結論 63
參考文獻 65
dc.language.isozh-TW
dc.title奈米矽片銀聚氨酯複合材料作為牙齒窩隙封劑之研究zh_TW
dc.titlePolyurethane Composites with Silver Nanoparticles Immobilized on Nanoscale Silicate Platelets as Pit and Fissure Sealantsen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王姻麟(Yin-Lin Wang),謝明佑,李志偉
dc.subject.keyword窩隙封劑,奈米矽片,奈米銀粒子,聚氨酯,複合材料,抗菌活性,生物相容性,zh_TW
dc.subject.keywordpit and fissure sealant,nanoscale silicate platelets,silver nanoparticles,polyurethane,composite material,antibacterial activity,biocompatibility,en
dc.relation.page69
dc.identifier.doi10.6342/NTU201801556
dc.rights.note未授權
dc.date.accepted2018-07-16
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床牙醫學研究所zh_TW
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
4.45 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved