請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19992完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊維元(Wei-Yuan Yang) | |
| dc.contributor.author | Yuan-Ping Huang | en |
| dc.contributor.author | 黃元平 | zh_TW |
| dc.date.accessioned | 2021-06-08T02:38:30Z | - |
| dc.date.copyright | 2018-07-23 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-18 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19992 | - |
| dc.description.abstract | 目前已經發現透過稱為線粒體自噬的特別微調的機制是線粒體壽命的關鍵決 定因素。細胞需要確保其線粒體質量得以保持活力。這部分是通過稱為PINK/Parkin 介導的線粒體自噬途徑進行選擇性降解受損的線粒體來實現的。我們確認線粒體動力學為線粒體質量控制的另一種手段:功能受損的線粒體與附近的線粒體網絡的融合可以促進其功能的恢復。通過使用光敏劑在功能上干擾線粒體使得這一發現成為可能。在這裡,我們使用光敏劑來破壞選定的線粒體,並用可被激光活化的熒光蛋白 PAGFP 追踪它們的動態。透過針對 O-GlcNAc 轉移酶(OGT),其活性取決於葡萄糖的可用性,以及 TRAK1,Miro1 和 Miro2 的siRNA 來改變線粒體動力學,致使線粒體受損的可能性改變得以進行線粒體自噬。我們發現與附近的線粒體網絡融合可以促進受損線粒體功能的恢復。我們研究了線粒體裂變/融合和線粒體運動在線粒體自噬中的分子機制和作用。這些結果表明線粒體動力學和線粒體自噬在維持線粒體質量方面的協調。 | zh_TW |
| dc.description.abstract | It has been found that autophagy is a key determinant for the life span of mitochondria through a particularly fine-tuned mechanism called mitophagy. Cells need to ensure
their mitochondrial quality to remain viable. This is achieved in part by the selective degradation of damaged mitochondria through a well-characterized pathway termed PINK/Parkin-mediated mitophagy. We have now identified mitochondrial dynamics as an additional means for mitochondrial quality control: fusion of a functionally-impaired mitochondrion with the nearby mitochondrial network can promote the recovery of its function. The discovery was made possible through the use of a photosensitizer to functionally disturb mitochondria. Here we used photosensitizers to damage selected mitochondria and traced their fate with PAGFP, a photoactivatable fluorescent protein. Perturbing mitochondrial dynamics through siRNA like TRAK1, Miro1 and Miro2, the enzyme O-GlcNAc Transferase (OGT), whose activity depends on glucose availability, led to alteration in the likely-hood of impaired mitochondria to undergo mitophagy. We found that fusion with nearby mitochondrial network can promote the recovery of a damaged mitochondrion’s function. We investigated on the molecular mechanisms and roles of mitochondrial fission/fusion and mitochondrial motility in mitophagy. These results suggest coordination between mitochondrial dynamics and mitophagy in maintaining mitochondrial quality. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T02:38:30Z (GMT). No. of bitstreams: 1 ntu-107-D99b46016-1.pdf: 3517171 bytes, checksum: ad8ff5a2253f6592bc9f5c0ead4531ea (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | Table of Contents
摘要................................................................................................................................................ i Abstract........................................................................................................................................ ii Table of Contents ........................................................................................................................iv Introduction................................................................................................................................. 1 1. Autophagy............................................................................................................................ 1 1.1 The autophagy pathway................................................................................................ 2 1.2 The machinery of autophagy........................................................................................ 3 1.2.1 Initiation and elongation............................................................... 3 1.2.2 Maturation and fusion .................................................................. 5 2. Role of mitochondria in cells .............................................................................................. 6 3. Mitochondrial quality control ............................................................................................ 8 3.1 Quality control of mitochondrial proteins by AAA+ proteases .............................. 10 3.2 Mitochondrial quality control by mitochondrial fission and fusion....................... 12 3.2.1 Proteins regulate mitochondrial dynamics................................ 12 3.2.2 Effectors of fusion........................................................................ 14 3.2.3 Effectors of fission ....................................................................... 14 3.3 Mitophagy: recycling of compounds.......................................................................... 17 3.3.1 Mechanisms of mitophagy in yeast ............................................ 17 3.3.2 Mechanisms of mitophagy in mammalian cells ........................ 19 3.3.2.1 Parkin-dependent mitophagy .......................................... 19 3.3.2.2 Parkin-independent mitophagy....................................... 22 3.4 Mitochondrial quality control by mitochondria-derived vesicles and mitochondrial spheroids ................................................................................................... 25 3.5 Mitochondrial motility in mitophagy ........................................................................ 27 Material and methods ............................................................................................................... 31 Plasmid Constructs ............................................................................................................... 31 Immunoreagents.................................................................................................................... 31 Photosensitizers ..................................................................................................................... 32 Cell Culture and Transfection ............................................................................................. 32 Small interfering RNA (siRNA) ........................................................................................... 33 Stress Treatments.................................................................................................................. 34 Neuron Treatments ............................................................................................................... 34 Neuronal cell culture............................................................................................................. 34 Electroporation...................................................................................................................... 35 Live-Image Acquisition and Quantification........................................................................ 36 Quantification of Parkin recruitment and mitochondria diffusing ratio......................... 38 Cell culture and differentiation of SH-SY5Y cells ............................................................. 39 Statistical analyses................................................................................................................. 39 Result.......................................................................................................................................... 41 Activation of mitochondrial MitoTracker Deep Red FM affects PARK2-mediated mitophagy and fusion recovery............................................................................................ 41 ROS-induced Parkin and LC3 recruitment to mitochondria leads to mitophagy. ......... 43 Regulation of mitochondrial quality control in the change of mitochondrial motility ... 45 The effect of extracellular glucose alters mitochondrial motility in Hela cells................ 47 Quality control of damaged axonal mitochondrial by photobleaching in primary rat cortical axons and differentiated SH-SY5Y........................................................................ 48 Discussion................................................................................................................................... 50 Figures........................................................................................................................................ 54 Figure 1. Mitochondria damaged with MitoTracker Deep Red FM causes or PARK2- mediated mitophagy and fusion recovery. .......................................................................... 55 Figure 2. A model of the damaged mitochondrion’s mechanism...................................... 56 Figure 3. Exchanging of mitochondrial matrix and outer membrane during mitophagy. ................................................................................................................................................. 57 Figure 4. Illuminated-induced damaged mitochondria fused with healthy mitochondria network................................................................................................................................... 58 Figure 5. Schematic representation of the proposed mechanism of damaged mitochondria.......................................................................................................................... 59 Figure 6. CCCP-Induced Recruitment of Parkin to Mitochondria in Hela cells and SHSY5Y cells. ............................................................................................................................. 60 Figure 7. Photo-bleaching of KillerRed-dMito leads to the sequential events of the PARK2-dependent mitophagy pathway.............................................................................. 61 Figure 8. ROS level of mitochondrial network show change after fuse with damage mitochondria.......................................................................................................................... 62 Figure 9. Mitochondrial motility proteins was knocked down by siRNA. ....................... 63 Figure 10. PAGFP area ratio analysis of mitochondrial motility protein knockdown by siRNA. .................................................................................................................................... 64 Figure 11. Parkin recruitment to damaged mitochondria depends on mitochondria dynamics................................................................................................................................. 65 Figure 12. Parkin recruitment ratio analysis of mitochondrial motility protein knockdown by siRNA. .......................................................................................................... 66 Figure 13. remaining mito-PAGFP ratio analysis of mitochondrial motility protein knockdown by siRNA.. ......................................................................................................... 67 Figure 14. Illustrative representation of the proposed mechanism of damaged mitochondria.......................................................................................................................... 68 Figure 15. Parkin recruitment to damaged mitochondria depends on extracellular glucose and stress. ................................................................................................................. 69 Figure 16. PAGFP area ratio analysis of altered extracelluar glucose level and stress. . 70 Figure 17. Parkin recruitment ratio analysis of altered extracelluar glucose level and stress. ...................................................................................................................................... 71 Figure 18. remaining mito-PAGFP ratio analysis of altered extracelluar glucose level and stress................................................................................................................................ 72 Figure 19. The damaged mitochondria was recovery membrane potential through fused with another healthy mitochondria in the primary cortical neurons and differentiated. ................................................................................................................................................. 73 Figure 20. The damaged mitochondria was recovery membrane potential through fused with another healthy mitochondria in the primary cortical differentiated SH-SY5Y cells. ........................................................................................................................................ 74 Figure 21. remaining mito-PAGFP ratio analysis of primary rat cortical neurons and differentiated SH-SY5Y cells................................................................................................ 75 Reference.................................................................................................................................... 76 | |
| dc.language.iso | en | |
| dc.title | 線粒體融合對於Parkin介導線粒體自噬的抑製作用 | zh_TW |
| dc.title | An inhibitory role for mitochondrial fusion in Parkin-mediated mitophagy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 陳光超(Guang-Chao Chen),姚季光(Chi-Kuang Yao),冀宏源(Hung-Yuan (Peter),管永恕(Yung-Shu Kuan) | |
| dc.subject.keyword | 粒線體,粒線體運動,粒線體自噬,粒線體動力學,光敏劑, | zh_TW |
| dc.subject.keyword | Mitochondria,mitochondrial motility,mitophagy,mitochondrial dynamic,photosensitizer, | en |
| dc.relation.page | 100 | |
| dc.identifier.doi | 10.6342/NTU201801617 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2018-07-18 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 3.43 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
