Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19992
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊維元(Wei-Yuan Yang)
dc.contributor.authorYuan-Ping Huangen
dc.contributor.author黃元平zh_TW
dc.date.accessioned2021-06-08T02:38:30Z-
dc.date.copyright2018-07-23
dc.date.issued2018
dc.date.submitted2018-07-18
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19992-
dc.description.abstract目前已經發現透過稱為線粒體自噬的特別微調的機制是線粒體壽命的關鍵決 定因素。細胞需要確保其線粒體質量得以保持活力。這部分是通過稱為PINK/Parkin 介導的線粒體自噬途徑進行選擇性降解受損的線粒體來實現的。我們確認線粒體動力學為線粒體質量控制的另一種手段:功能受損的線粒體與附近的線粒體網絡的融合可以促進其功能的恢復。通過使用光敏劑在功能上干擾線粒體使得這一發現成為可能。在這裡,我們使用光敏劑來破壞選定的線粒體,並用可被激光活化的熒光蛋白 PAGFP 追踪它們的動態。透過針對 O-GlcNAc 轉移酶(OGT),其活性取決於葡萄糖的可用性,以及 TRAK1,Miro1 和 Miro2 的siRNA 來改變線粒體動力學,致使線粒體受損的可能性改變得以進行線粒體自噬。我們發現與附近的線粒體網絡融合可以促進受損線粒體功能的恢復。我們研究了線粒體裂變/融合和線粒體運動在線粒體自噬中的分子機制和作用。這些結果表明線粒體動力學和線粒體自噬在維持線粒體質量方面的協調。zh_TW
dc.description.abstractIt has been found that autophagy is a key determinant for the life span of mitochondria through a particularly fine-tuned mechanism called mitophagy. Cells need to ensure
their mitochondrial quality to remain viable. This is achieved in part by the selective degradation of damaged mitochondria through a well-characterized pathway termed
PINK/Parkin-mediated mitophagy. We have now identified mitochondrial dynamics as an additional means for mitochondrial quality control: fusion of a functionally-impaired mitochondrion with the nearby mitochondrial network can promote the recovery of its function. The discovery was made possible through the use of a photosensitizer to functionally disturb mitochondria. Here we used photosensitizers to damage selected mitochondria and traced their fate with PAGFP, a photoactivatable fluorescent protein. Perturbing mitochondrial dynamics through siRNA like TRAK1, Miro1 and Miro2, the enzyme O-GlcNAc Transferase (OGT), whose activity depends on glucose availability, led to alteration in the likely-hood of impaired mitochondria to undergo mitophagy. We found that fusion with nearby mitochondrial network can promote the recovery of a damaged mitochondrion’s function. We investigated on the molecular mechanisms and roles of mitochondrial fission/fusion and mitochondrial motility in mitophagy. These results suggest coordination between mitochondrial dynamics and mitophagy in maintaining mitochondrial quality.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:38:30Z (GMT). No. of bitstreams: 1
ntu-107-D99b46016-1.pdf: 3517171 bytes, checksum: ad8ff5a2253f6592bc9f5c0ead4531ea (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsTable of Contents
摘要................................................................................................................................................ i
Abstract........................................................................................................................................ ii
Table of Contents ........................................................................................................................iv
Introduction................................................................................................................................. 1
1. Autophagy............................................................................................................................ 1
1.1 The autophagy pathway................................................................................................ 2
1.2 The machinery of autophagy........................................................................................ 3
1.2.1 Initiation and elongation............................................................... 3
1.2.2 Maturation and fusion .................................................................. 5
2. Role of mitochondria in cells .............................................................................................. 6
3. Mitochondrial quality control ............................................................................................ 8
3.1 Quality control of mitochondrial proteins by AAA+ proteases .............................. 10
3.2 Mitochondrial quality control by mitochondrial fission and fusion....................... 12
3.2.1 Proteins regulate mitochondrial dynamics................................ 12
3.2.2 Effectors of fusion........................................................................ 14
3.2.3 Effectors of fission ....................................................................... 14
3.3 Mitophagy: recycling of compounds.......................................................................... 17
3.3.1 Mechanisms of mitophagy in yeast ............................................ 17
3.3.2 Mechanisms of mitophagy in mammalian cells ........................ 19
3.3.2.1 Parkin-dependent mitophagy .......................................... 19
3.3.2.2 Parkin-independent mitophagy....................................... 22
3.4 Mitochondrial quality control by mitochondria-derived vesicles and
mitochondrial spheroids ................................................................................................... 25
3.5 Mitochondrial motility in mitophagy ........................................................................ 27
Material and methods ............................................................................................................... 31
Plasmid Constructs ............................................................................................................... 31
Immunoreagents.................................................................................................................... 31
Photosensitizers ..................................................................................................................... 32
Cell Culture and Transfection ............................................................................................. 32
Small interfering RNA (siRNA) ........................................................................................... 33
Stress Treatments.................................................................................................................. 34
Neuron Treatments ............................................................................................................... 34
Neuronal cell culture............................................................................................................. 34
Electroporation...................................................................................................................... 35
Live-Image Acquisition and Quantification........................................................................ 36
Quantification of Parkin recruitment and mitochondria diffusing ratio......................... 38
Cell culture and differentiation of SH-SY5Y cells ............................................................. 39
Statistical analyses................................................................................................................. 39
Result.......................................................................................................................................... 41
Activation of mitochondrial MitoTracker Deep Red FM affects PARK2-mediated
mitophagy and fusion recovery............................................................................................ 41
ROS-induced Parkin and LC3 recruitment to mitochondria leads to mitophagy. ......... 43
Regulation of mitochondrial quality control in the change of mitochondrial motility ... 45
The effect of extracellular glucose alters mitochondrial motility in Hela cells................ 47
Quality control of damaged axonal mitochondrial by photobleaching in primary rat
cortical axons and differentiated SH-SY5Y........................................................................ 48
Discussion................................................................................................................................... 50
Figures........................................................................................................................................ 54
Figure 1. Mitochondria damaged with MitoTracker Deep Red FM causes or PARK2-
mediated mitophagy and fusion recovery. .......................................................................... 55
Figure 2. A model of the damaged mitochondrion’s mechanism...................................... 56
Figure 3. Exchanging of mitochondrial matrix and outer membrane during mitophagy.
................................................................................................................................................. 57
Figure 4. Illuminated-induced damaged mitochondria fused with healthy mitochondria
network................................................................................................................................... 58
Figure 5. Schematic representation of the proposed mechanism of damaged
mitochondria.......................................................................................................................... 59
Figure 6. CCCP-Induced Recruitment of Parkin to Mitochondria in Hela cells and SHSY5Y cells. ............................................................................................................................. 60
Figure 7. Photo-bleaching of KillerRed-dMito leads to the sequential events of the
PARK2-dependent mitophagy pathway.............................................................................. 61
Figure 8. ROS level of mitochondrial network show change after fuse with damage
mitochondria.......................................................................................................................... 62
Figure 9. Mitochondrial motility proteins was knocked down by siRNA. ....................... 63
Figure 10. PAGFP area ratio analysis of mitochondrial motility protein knockdown by
siRNA. .................................................................................................................................... 64
Figure 11. Parkin recruitment to damaged mitochondria depends on mitochondria
dynamics................................................................................................................................. 65
Figure 12. Parkin recruitment ratio analysis of mitochondrial motility protein
knockdown by siRNA. .......................................................................................................... 66
Figure 13. remaining mito-PAGFP ratio analysis of mitochondrial motility protein
knockdown by siRNA.. ......................................................................................................... 67
Figure 14. Illustrative representation of the proposed mechanism of damaged
mitochondria.......................................................................................................................... 68
Figure 15. Parkin recruitment to damaged mitochondria depends on extracellular
glucose and stress. ................................................................................................................. 69
Figure 16. PAGFP area ratio analysis of altered extracelluar glucose level and stress. . 70
Figure 17. Parkin recruitment ratio analysis of altered extracelluar glucose level and
stress. ...................................................................................................................................... 71
Figure 18. remaining mito-PAGFP ratio analysis of altered extracelluar glucose level
and stress................................................................................................................................ 72
Figure 19. The damaged mitochondria was recovery membrane potential through fused
with another healthy mitochondria in the primary cortical neurons and differentiated.
................................................................................................................................................. 73
Figure 20. The damaged mitochondria was recovery membrane potential through fused
with another healthy mitochondria in the primary cortical differentiated SH-SY5Y
cells. ........................................................................................................................................ 74
Figure 21. remaining mito-PAGFP ratio analysis of primary rat cortical neurons and
differentiated SH-SY5Y cells................................................................................................ 75
Reference.................................................................................................................................... 76
dc.language.isoen
dc.title線粒體融合對於Parkin介導線粒體自噬的抑製作用zh_TW
dc.titleAn inhibitory role for mitochondrial fusion in Parkin-mediated mitophagyen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree博士
dc.contributor.oralexamcommittee陳光超(Guang-Chao Chen),姚季光(Chi-Kuang Yao),冀宏源(Hung-Yuan (Peter),管永恕(Yung-Shu Kuan)
dc.subject.keyword粒線體,粒線體運動,粒線體自噬,粒線體動力學,光敏劑,zh_TW
dc.subject.keywordMitochondria,mitochondrial motility,mitophagy,mitochondrial dynamic,photosensitizer,en
dc.relation.page100
dc.identifier.doi10.6342/NTU201801617
dc.rights.note未授權
dc.date.accepted2018-07-18
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
3.43 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved