Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19985
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor顏瑞泓(Jui-Hung Yen)
dc.contributor.authorChung-An Tanen
dc.contributor.author譚長恩zh_TW
dc.date.accessioned2021-06-08T02:38:24Z-
dc.date.copyright2018-07-23
dc.date.issued2018
dc.date.submitted2018-07-18
dc.identifier.citationBCPC. (2012). The pesticide manual, 16th ed. MacBean, C. British Crop Production Council. Hampshire, United Kingdom.
Boudina, A., Emmelin, C., Baaliouamer, A., Paisse, O., and Chovelon, J.M. (2007). Photochemical transformation of azoxystrobin in aqueous solutions. Chemosphere 68, 1280-1288.
Burns, J.L., and DiChristina, T.J. (2009). Anaerobic respiration of elemental sulfur and thiosulfate by Shewanella oneidensis MR-1 requires psrA, a homolog of the phsA gene of Salmonella enterica serovar typhimurium LT2. Appl Environ Microbiol 75, 5209-5217.
Burrows, H.D., Canle L, M., Santaballab, J.A., and Steenkenc, S. (2002). Reaction pathways and mechanisms of photodegradation of pesticides. J Photochem Photobiol 67, 71-108.
Caccavo, F., Lonergan, D.J., Lovley, D.R., Davis, M., Stolz, J.F., and Mcinerney, M.J. (1994). Geobacter Sulfurreducens Sp-Nov, a Hydrogen-Oxidizing and Acetate-Oxidizing Dissimilatory Metal-Reducing Microorganism. Appl Environ Microb 60, 3752-3759.
Cai, P.J., Xiao, X., He, Y.R., Li, W.W., Chu, J., Wu, C., He, M.X., Zhang, Z., Sheng, G.P., Lam, M.H.W., et al. (2012). Anaerobic biodecolorization mechanism of methyl orange by Shewanella oneidensis MR-1. Appl Microbiol Biot 93, 1769-1776.
Castelo-Grande, T., Augusto, P.A., Monterio, P., Estevez, A.M., and Barbosa, D. (2010). Remediation of soils contaminated with pesticides: a review. Intern J Environ Anal Chem 90, 438-467.
Chatterjee, D., and Dasgupta, S., (2005). Visible light induced photocatalytic degradation of organic pollutants. J Photochem Photobiol, C 6, 186-205.
Chen, C.H., Chang, C.F., Ho, C.H., Tsai, T.L., and Liu, S.M. (2008). Biodegradation of crystal violet by a Shewanella sp NTOU1. Chemosphere 72, 1712-1720.
Coursolle, D., Baron, D.B., Bond, D.R., and Gralnick, J.A. (2010). The Mtr Respiratory Pathway Is Essential for Reducing Flavins and Electrodes in Shewanella oneidensis. Journal of Bacteriology 192, 467-474.
De Corte, S., Hennebel, T., De Gusseme, B., Verstraete W., and Boon, N. (2012). Bio-palladium: from metal recovery to catalytic applications. Microb Biotechnol 5, 5-17.
Devipriya, S., and Yesodharan, S. (2005). Photocatalytic degradation of pesticide contaminants in water. Sol Energy Mater Sol Cells 86, 309-348.
De Windt, W., Aelterman, P., and Verstraete, W. (2005). Bioreductive deposition of palladium (0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls. Environ Microbiol 7, 314-325.
Dietrich, W., and Klimmek, O. (2002). The function of methyl-menaquinone-6 and polysulfide reductase membrane anchor (PsrC) in polysulfide respiration of Wolinella succinogenes. Eur. J. Biochem 269, 1086-1095.
Fredrickson, J.K., Romine, M.F., Beliaev, A.S., Auchtung, J.M., Driscoll, M.E., Gardner, T.S., Nealson, K.H., Osterman, A.L., Pinchuk, G., Reed, J.L., et al. (2008). Towards environmental systems biology of Shewanella. Nat Rev Microbiol 6, 592-603.
Fu, F.L., and Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management 92, 407-418.
Garau, V.L., Angioni, A., Del Real, A.A., Russo, M., and Cabras, P. (2002). Disappearance of azoxystrobin, pyrimethanil, cyprodinil, and fludioxonil on tomatoes in a greenhouse. J Agr Food Chem 50, 1929-1932.
Garbarino, J.R., Hayes, H.C., Roth, D.A., Antweiler, R.C., Brinton, T.I., and Taylor H.E. (1995). Heavy metals in the Mississippi river. U.S. Geological Survey Circular 1133. Avaliable at: https://pubs.usgs.gov/circ/1995/circ1133/heavy-metals.html. Accessed 1 June 2018.
Gorby, Y.A., Yanina, S., McLean, J.S., Rosso, K.M., Moyles, D., Dohnalkova, A., Beveridge, T.J., Chang, I.S., Kim, B.H., Kim, K.S., et al. (2006). Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. P Natl Acad Sci USA 103, 11358-11363.
Grano, S., (2015). Environmental issues facing Taiwan. The Brookings Institute. Avaliable at: https://www.brookings.edu/opinions/environmental-issues-facing-taiwan/. Accessed 1 June 2018.
He, Y.T., Wilson, J.T., and Wilkin, R.T. (2010). Impact of iron sulfide transformation on trichloroethylene degradation. Geochim Cosmochim Ac 74, 2025-2039.
Heidelberg, J.F., Paulsen, I.T., Nelson, K.E., Gaidos, E.J., Nelson, W.C., Read, T.D., Eisen, J.A., Seshadri, R., Ward, N., Methe, B., et al. (2002). Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis. Nat Biotechnol 20, 1118-1123.
Hennebel, T., Simoen, H., De Windt, W., Verloo, M., Boon, N., and Verstraete, W. (2009). Biocatalytic dechlorination of trichloroethylene with bio-palladium in a pilot-scale membrane reactor. Biotechnol Bioeng 102, 995-1002.
Huo, Y.C., Li, W.W., Chen, C.B., Li, C.X., Zeng, R., Lau, T.C., and Huang, T.Y. (2016). Biogenic FeS accelerates reductive dechlorination of carbon tetrachloride by Shewanella putrefaciens CN32. Enzyme Microb Tech 95, 236-241.
Hsiung, Y.H. (2017). Use of local dissimilatory metal reducing bacteria Shewanella sp. KR12 to degrade four herbicides. Master Thesis. Taipei: National Taiwan Universit Department of Agricultural Chemistry.
IUPAC. (2018). General information for hexaconazole. University of Hertfordshire. International Union of Pure and Applied Chemistry. Avaliable at: https://sitem.herts.ac.uk/aeru/iupac/Reports/382.htm. Accessed 1 June 2018.
Jacobsen, R.T. (2005). Catalyst recovery – Part 3: removing contaminants from spent catalysts. Chem Eng Prog 101, 41–43.
Kanel, S. R., Su, C., Patel, U., and Agrawal, A. (2011). Applications of metal nanoparticles in environmental cleanup, 1st ed. Mukhopadhyay, S.M. Nanoscale Multifunctional Materials: Science and Application. John Wiley & Sons, Inc., Hoboken, NJ, , 271-319.
Kim, M., and Chun, J. (2014). 16S rRNA Gene-Based Identification of Bacteria and Archaea using the EzTaxon Server. Method Microbiol 41, 61-74.
Kimura, M. (1980). A Simple Method for Estimating Evolutionary Rates of Base Substitutions through Comparative Studies of Nucleotide-Sequences. J Mol Evol 16, 111-120.
Konishi, Y., Ohno, K., Saitoh, N., Nomura, T., Nagamine, S., Hishida, H., Takahashi, Y., and Uruga, T. (2007). Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J Biotechnol 128, 648-653.
Kumar, R.S., Jyothsna, T.S.S., Sasikala, C., Seong, C.N., Lim, C.H., Park, S.C., and Ramana, C.V. (2010). Shewanella fodinae sp nov., isolated from a coal mine and from a marine lagoon. Int J Syst Evol Micr 60, 1649-1654.
Lhomme, L., Brosillon, S., and Wolbert, D. (2007). Photocatalytic degradation of a triazole pesticide, cyproconazole, in water. J Photochem Photobiol, A 188, 34-42.
Liu, C.L. (2016). Assess the ability of Shewanella spp. to accumulate metal and degrade organic pollutant. Doctorial Dissertation. Taipei: National Taiwan University Department of Agricultural Chemistry.
Liu, C.L., and Yen, J.H. (2016). Characterization of lead nanoparticles formed by Shewanella sp KR-12. J Nanopart Res 18.
Lovley, D.R. (1993). Dissimilatory Metal Reduction. Annu Rev Microbiol 47, 263-290.
Lovley, D.R., and Phillips, E.J.P. (1988). Novel Mode of Microbial Energy-Metabolism – Organic-Carbon Oxidation Coupled to Dissimilatory Reduction of Iron or Manganese. Appl Environ Microb 54, 1472-1480.
Marsili, E., Baron, D.B., Shikhare, I.D., Coursolle, D., Gralnick, J.A., and Bond, D.R. (2008). Shewanella Secretes flavins that mediate extracellular electron transfer. P Natl Acad Sci USA 105, 3968-3973.
Myers, C.R., and Myers, J.M. (1997). Cloning and sequence of cymA a gene encoding a tetraheme cytochrome c required for reduction of iron(III), fumarate, and nitrate by Shewanella putrefaciens MR-1. Journal of Bacteriology 179, 1143-1152.
Myers, C.R., and Myers, J.M. (2002). MtrB is required for proper incorporation of the cytochromes OmcA and OmcB into the outer membrane of Shewanella putrefaciens MR-1. Appl Environ Microb 68, 5585-5594.
Myers, C.R., and Nealson, K.H. (1988). Bacterial Manganese Reduction and Growth with Manganese Oxide as the Sole Electron-Acceptor. Science 240, 1319-1321.
Myers, C.R., and Nealson, K.H. (1990). Respiration-Linked Proton Translocation Coupled to Anaerobic Reduction of Manganese(Iv) and Iron(Iii) in Shewanella putrefaciens MR-1. Journal of Bacteriology 172, 6232-6238.
Nag, S.K., and Dureja, P. (1996). Phototransformation of triadimefon on glass and soil surfaces. Pestic Sci 48, 247-252.
Notredame, C., Higgins, D.G., and Heringa, J. (2000). T-Coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol 302, 205-217.
OECD. (2002) Persistent, bioaccumulative, and toxic pesticides in OECD member countries, Annex 2. Organisation for Economic Co-operation and Development. Avalible at: http://www.oecd.org/env/ehs/pesticides-biocides/2956551.pdf. Accessed 1 June 2018.
Oseghe, E. O., Ndungu, P.G., and Jonnalagadda, S. B. (2015). Photocatalytic degradation of 4-chloro-2-methylphenoxyacetic acid using W-doped TiO2. J Photochem Photobiol, A 312, 96-106.
Pirbadian, S., Barchinger, S.E., Leung, K.M., Byun, H.S., Jangir, Y., Bouhenni, R.A., Reed, S.B., Romine, M.F., Saffarini, D.A., Shi, L., et al. (2014). Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. P Natl Acad Sci USA 111, 12883-12888.
Pouretedal, H.R., Keshavarz, M.H., Yosefi, M.H., Shokrollahi, A., and Zali, A. (2009). Photodegradation of HMX and RDX in the Presence of Nanocatalyst of Zinc Sulfide Doped with Copper. Iran J Chem Chem Eng 28, 13-19.
Rajamanickam, D., and Shanthi, M. (2012). Photocatalytic degradation of an organic pollutant, 4-nitrophenol by zinc oxide - UV process. Res J Chem Environ 16, 79-86.
Rao, H., Lu, Z., Liu, X., Ge, H., Zhang, Z., Zou, P., Heb, H., and Wang, Y. (2016). Visible light-driven photocatalytic degradation performance for methylene blue with different multi-morphological features of ZnS. RSC Adv 6, 46299–46307.
Ritter, L., Solomon, K.R., Forget, J., Stemernoff, M., and O’Leary, C. (2007). Persistent organic pollutants. United Nations Environment Programme. Avaliable at: https://web.archive.org/web/20070926101350/http://www.chem.unep.ch/pops/ritter/en/ritteren.pdf. Accessed 1 June 2018.
Rodionov, D.A., Yang, C., Li, X.Q., Rodionova, I.A., Wang, Y.B., Obraztsova, A.Y., Zagnitko, O.P., Overbeek, R., Romine, M.F., Reed, S., et al. (2010). Genomic encyclopedia of sugar utilization pathways in the Shewanella genus. Bmc Genomics 11.
Serres, M.H., and Riley, M. (2006). Genomic analysis of carbon source metabolism of Shewanella oneidensis MR-1: Predictions versus experiments. Journal of Bacteriology 188, 4601-4609.
Shelef, L.A., and Tan, W. (1998). Automated detection of hydrogen sulfide release from thiosulfate by Salmonella spp. J Food Protect 61, 620-622.
Shi, L., Squier, T.C., Zachara, J.M., and Fredrickson, J.K. (2007). Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes. Mol Microbiol 65, 12-20.
Slobodkin, A.I., Tourova, T.P., Kuznetsov, B.B., Kostrikina, N.A., Chernyh, N.A., and Bonch-Osmolovskaya, E.A. (1999). Thermoanaerobacter siderophilus sp nov., a novel dissimilatory Fe(III)-reducing, anaerobic, thermophilic bacterium. Int J Syst Bacteriol 49, 1471-1478.
Stackebrandt, E., and Goebel, M. (1994). Taxonomic Note: A Place for DNA-DNA Reassociation and 16s rRNA Sequence Analysis in the Present Species Definition in Bacteriology. Int J Syst Evol Microbiol 44, 846-849.
Stookey, L.L. (1970). Ferrozine - a new spectrophotometric reagent for iron. Anal Chem 42, 779-780.
Sundaresh, K. (2015). Ecological fate of chemicals used in agriculture. Department of Horticulture Yadgiri. Government Of Karnataka. Avaliable at: https://www.slideshare.net/sundaershkalal/fate-of-pesticides-in-environment-or-environmental-polution-by-pesticides. Accessed 1 June 2018.
Suresh, A.K., Pelletier, D.A., Wang, W., Broich, M.L., Moon, J.W., Gu, B.H., Allison, D.P., Joy, D.C., Phelps, T.J., and Doktycz, M.J. (2011). Biofabrication of discrete spherical gold nanoparticles using the metal-reducing bacterium Shewanella oneidensis. Acta Biomater 7, 2148-2152.
Suresh, A.K., Pelletier, D.A., Wang, W., Moon, J.W., Gu, B.H., Mortensen, N.P., Allison, D.P., Joy, D.C., Phelps, T.J., and Doktycz, M.J. (2010). Silver Nanocrystallites: Biofabrication using Shewanella oneidensis, and an Evaluation of Their Comparative Toxicity on Gram-negative and Gram-positive Bacteria. Environ Sci Technol 44, 5210-5215.
Umar, M., and Aziz, H. A. (2013). Photocatalytic degradation of organic pollutants in water, Organic pollutants. IntechOpen. Available from: https://www.intechopen.com/books/organic-pollutants-monitoring-risk-and-treatment/photocatalytic-degradation-of-organic-pollutants-in-water. Accessed 1 June 2018.
USEPA. Pesticide fact sheet: azoxystrobin. (1997). Office of Prevention, Pesticides, and Toxic Substances. United States Environmental Protection Agency. Available at: https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/fs_PC-128810_07-Feb-97.pdf. Accessed 1 June 2018.
Venkateswaran, K., Moser, D.P., Dollhopf, M.E., Lies, D.P., Saffarini, D.A., MacGregor, B.J., Ringelberg, D.B., White, D.C., Nishijima, M., Sano, H., et al. (1999). Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int J Syst Bacteriol 49, 705-724.
Vijai Anand, K., Mohan, R., Mohan Kumar, R., Karl Chinnu, M., and Jayavel, R. (2013). Structural and optical properties of high-purity cubic phase ZnS nanoparticles prepared by thermal decomposition route for optoelectronic applications. Proc Indian Natn Sci Acad 79, 395-399
Wamhoff, H., Koch, H., Förster, R., Herrmann, C. Atta, S.M.S., Mahran, R., and Sidky, M.M. (1994) Zum photoabbau von 1-(4-chlorphenyl)-4,4- dimethyl-3-(1H-1,2,4-triazol-1-yl-methyl)-pentan-3-ol (folicur). Z Naturforsch, B 49, 280–287.
Wang, G.Y., Zhang, B.G., Li, S., Yang, M., and Yin, C.C. (2017). Simultaneous microbial reduction of vanadium (V) and chromium (VI) by Shewanella loihica PV-4. Bioresource Technol 227, 353-358.
Wang, L.T., Lee, F.L., Tai, C.J., and Kasai, H. (2007). Comparison of gyrB gene sequences, 16S rRNA gene sequences and DNA-DNA hybridization in the Bacillus subtilis group. Int J Syst Evol Micr 57, 1846-1850.
Wang, S.W., and Shi, X.L. (2001). Molecular mechanisms of metal toxicity and carcinogenesis. Mol Cell Biochem 222, 3-9.
Wayne, L.G., Brenner, D.J., Colwell, R.R., Grimont, P.A.D., Kandler, O., Krichevsky, M.I., Moore, L.H., Moore, W.E.C., Murray, R.G.E., Stackebrandt, E., et al. (1987). Report of the Ad-Hoc-Committee on Reconciliation of Approaches to Bacterial Systematics. Int J Syst Bacteriol 37, 463-464.
Xiao, X., Ma, X.B., Yuan, H., Liu, P.C., Lei, Y.B., Xu, H., Du, D.L., Sun, J.F., and Feng, Y.J. (2015). Photocatalytic properties of zinc sulfide nanocrystals biofabricated by metal-reducing bacterium Shewanella oneidensis MR-1. J Hazard Mater 288, 134-139.
Yamamoto, S., and Harayama, S. (1995). PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of pseudomonas putida strains. Appl Environ Microbiol 61, 1104–1109.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19985-
dc.description.abstractShewanella 是一種能夠異化金屬還原的兼性厭氧菌。 Shewanella 可生物合成奈米等級之金屬降解有機污染物,並使用多種細胞外電子接受者完成無氧呼吸,可同時解決環境中重金屬及有機物的問題。故Shewanella於環境復育是相當具有潛力。
本研究之分離株 Shewanella sp. NC1篩選自嘉義縣八掌溪之底泥中,利用BLAST 分析該菌群之16s rRNA及 gyrB 基因序列,推測分離株為一新菌種。該菌群可生物合成奈米等級之零價鈀、硫化鐵及硫化鋅,其所生成之硫化鋅為最經濟之光催化降解奈米顆粒。利用穿透式電子顯微鏡 (transmission electron microscopy) 、X光繞射儀 (X-ray diffractometer) 及全波長掃描式分光光度計 (UV-Vis scanning spectrophotometer) 進行奈米硫化鋅之特性分析。結果顯示NC1可將奈米等級之硫化鋅均勻分布於菌體表面,且於紫外光290 nm下具有特定之吸收峰。故利用NC1嘗試降解常見於臺灣南部河川中三種殺菌劑亞托敏 (azoxystrobin) 、待克利 (difenoconazole) 及菲克利 (hexaconazole) ,試驗結果顯示NC1所生成之奈米硫化鋅於20小時光催化降解試驗皆可降解該三種殺菌劑。本研究利用較環境友善之方式生物合成奈米硫化鋅降解河川中之殺菌劑,可進一步用於改善汙水處理。
zh_TW
dc.description.abstractShewanella is a genus of facultative anaerobic bacteria capable of dissimilatory metal reduction. Known for their respiratory prowess, Shewanella bacteria can utilize a wide variety of substances as extracellular electron acceptors to complete anaerobic respiration. Furthermore, Shewanella’s metal reducing ability allows it to biofabricate certain metal nanoparticles that could be used to degrade organic pollutants, coupling the remediation of heavy metals with organic pollutants. Hence, Shewanella bacteria have numerous applications in the area of environmental remediation.
In this study, a novel dissimilatory metal reducing bacterium was isolated from a river in Southern Taiwan. BLAST analysis of the bacterium’s 16s rRNA and gyrB genes revealed that it may be a new species of the Shewanella genus, and was subsequently characterized and labeled Shewanella sp. NC1. The bacterium was then used to produce Palladium (Pd), iron sulfide (FeS), and zinc sulfide (ZnS) nanoparticles, of which ZnS exhibits photocatalytic ability under irradiation of UV light, and is more cost effective. Thus, the biofabricated ZnS was characterized with transmission electron microscopy (TEM), X-ray diffraction (XRD), and UV-Vis scanning spectrophotometry. Results show that the biofabricated ZnS particles were well-dispersed on the surface of NC1 in the nanometer scale. Furthermore, the ZnS particles exhibited good UV absorbance under 290 nm. The organic pollutant degradation capability of the biofabricated ZnS nanoparticles, along with NC1, were then investigated on three fungicides that were frequently detected in eight major rivers of Southern Taiwan. Results of 72 h incubation treatments of NC1 with the fungicide, azoxystrobin, difenoconazole, or hexaconazole, showed that NC1 did not significantly decrease the concentration of the fungicides. On the other hand, ZnS nanoparticles biofabricated and supported by NC1 showed good photocatalytic removal of fungicides in 20 h experiments under UVC irradiation. This study offers an environmentally friendly approach to synthesize nanoparticles with pollutant degradation capabilities, which could be applied for water treatment with further optimization.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:38:24Z (GMT). No. of bitstreams: 1
ntu-107-R05623030-1.pdf: 2939989 bytes, checksum: 2fabd030e7e9993018e71d8124536042 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsI. INTRODUCTION 1
1.1 Dissimilatory Metal Reduction 1
1.2 Shewanella Literature Study 2
1.3 Environmental concerns 5
1.4 Shewanella Applications in Biremediation 8
1.5 Objectives 12
II. MATERIALS AND METHODS 14
2.1 Sampling and acclimation of bacterial strains 14
2.2 Preparation of anoxic M9 medium 14
2.3 Bacterial strain selection and isolation 15
2.4 Iron reduction test 16
2.5 Bacterial strain DNA sequencing and phylogenetic analysis 16
2.6 Test of carbon source usage 20
2.7 Test of sulfur species as electron acceptor 20
2.8 Formation and observation of biogenic nanoparticles 21
2.9 Characterization of biogenic ZnS nanoparticles 21
2.10 Determination of light absorption peak of biogenic ZnS 22
2.11 Fungicides used in degradation experiments 22
2.12 Microbial degradation of fungicides with Shewanella sp. NC1 28
2.13 Degradation of fungicides with ZnS biofabricated by Shewanella NC1 28
2.14 Calculation of reaction kinetics 31
2.15 Statistical analysis 31
III. RESULTS AND DISCUSSION 32
3.1 Strain selection 32
3.2 Bacterial strain DNA sequencing and phylogenetic analysis 35
3.3 Characterization of Shewanella sp. NC1 42
3.4 Sulfur reduction ability of Shewanella sp. NC1 44
3.5 Observation of Shewanella sp. NC1 and biogenic metal nanoparticles 46
3.6 Characterization of biogenic ZnS nanoparticles 51
3.7 Microbial degradation of fungicides with Shewanella sp. NC1 54
3.8 Degradation of fungicides with ZnS biofabricated by Shewanella NC1 59
IV. CONCLUSION 66
V. REFERENCES 67
dc.language.isoen
dc.title以異化金屬還原菌Shewanella sp. NC1生物合成奈米硫化鋅及其在光催化降解三種殺菌劑中之應用zh_TW
dc.titleCharacterization of ZnS particles biofabricated by novel metal reducing bacterium Shewanella sp. NC1 and its use in photocatalytic degradation of three fungicidesen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王一雄,李達源,張碧芬,陳玟瑾
dc.subject.keywordShewanella,異化金屬還原菌,生物合成奈米顆粒,光催化,殺菌劑,環境復育,zh_TW
dc.subject.keywordShewanella,dissmilatory metal reducing bacteria,biofabricated nanoparticles,photocatalysis,fungicides,environmental remediation,en
dc.relation.page76
dc.identifier.doi10.6342/NTU201801685
dc.rights.note未授權
dc.date.accepted2018-07-19
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
2.87 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved