Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19983
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡定平(Din Ping Tsai)
dc.contributor.authorRen Jie Linen
dc.contributor.author林仁傑zh_TW
dc.date.accessioned2021-06-08T02:38:23Z-
dc.date.copyright2018-08-01
dc.date.issued2018
dc.date.submitted2018-07-19
dc.identifier.citation1 Fang, N., Lee, H., Sun, C. & Zhang, X. Sub–diffraction-limited optical imaging with a silver superlens. Science 308, 534-537 (2005).
2 Pendry, J. B. Negative refraction makes a perfect lens. Physical review letters 85, 3966 (2000).
3 Ni, X., Wong, Z. J., Mrejen, M., Wang, Y. & Zhang, X. An ultrathin invisibility skin cloak for visible light. Science 349, 1310-1314 (2015).
4 Chen, W. T. et al. A broadband achromatic metalens for focusing and imaging in the visible. Nature nanotechnology, 1 (2018).
5 Wang, S. et al. A broadband achromatic metalens in the visible. Nature nanotechnology 13, 227 (2018).
6 邱國斌 & 蔡定平. 金屬表面電漿簡介. 物理雙月刊 28, 472-485 (2006).
7 Maier, S. A. Plasmonics: fundamentals and applications. (Springer Science & Business Media, 2007).
8 Juan, M. L., Righini, M. & Quidant, R. Plasmon nano-optical tweezers. Nature Photonics 5, 349 (2011).
9 Kuwata, H., Tamaru, H., Esumi, K. & Miyano, K. Resonant light scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation. Applied physics letters 83, 4625-4627 (2003).
10 Kelly, K. L., Coronado, E., Zhao, L. L. & Schatz, G. C. (ACS Publications, 2003).
11 Kottmann, J. P., Martin, O. J., Smith, D. R. & Schultz, S. Plasmon resonances of silver nanowires with a nonregular cross section. Physical Review B 64, 235402 (2001).
12 Bose, J. C. On the rotation of plane of polarisation of electric waves by a twisted structure. Proceedings of the Royal Society of London 63, 146-152 (1898).
13 Veselago, V. G. The electrodynamics of substances with simultaneously negative values of and μ. Soviet physics uspekhi 10, 509 (1968).
14 Pendry, J. B., Holden, A. J., Robbins, D. J. & Stewart, W. Magnetism from conductors and enhanced nonlinear phenomena. IEEE transactions on microwave theory and techniques 47, 2075-2084 (1999).
15 Smith, D. R., Padilla, W. J., Vier, D., Nemat-Nasser, S. C. & Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Physical review letters 84, 4184 (2000).
16 Jacob, Z., Alekseyev, L. V. & Narimanov, E. Optical hyperlens: far-field imaging beyond the diffraction limit. Optics express 14, 8247-8256 (2006).
17 Liu, Z., Lee, H., Xiong, Y., Sun, C. & Zhang, X. Far-field optical hyperlens magnifying sub-diffraction-limited objects. science 315, 1686-1686 (2007).
18 Gansel, J. K. et al. Gold helix photonic metamaterial as broadband circular polarizer. Science 325, 1513-1515 (2009).
19 Park, H. S., Kim, T.-T., Kim, H.-D., Kim, K. & Min, B. Nondispersive optical activity of meshed helical metamaterials. Nature communications 5, 5435 (2014).
20 Wurtz, G. A. et al. Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality. Nature nanotechnology 6, 107 (2011).
21 O’Brien, K. et al. Predicting nonlinear properties of metamaterials from the linear response. Nature materials 14, 379 (2015).
22 Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. science 334, 333-337 (2011).
23 Aieta, F. et al. Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities. Nano letters 12, 1702-1706 (2012).
24 Sun, S. et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano letters 12, 6223-6229 (2012).
25 Huang, L. et al. Dispersionless phase discontinuities for controlling light propagation. Nano letters 12, 5750-5755 (2012).
26 Hsiao, H. H. et al. Integrated Resonant Unit of Metasurfaces for Broadband Efficiency and Phase Manipulation. Advanced Optical Materials, 1800031 (2018).
27 Wu, P. C. et al. Versatile polarization generation with an aluminum plasmonic metasurface. Nano letters 17, 445-452 (2016).
28 Chen, W. T. et al. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano letters 14, 225-230 (2013).
29 Huang, Y.-W. et al. Aluminum plasmonic multicolor meta-hologram. Nano letters 15, 3122-3127 (2015).
30 Ni, X., Kildishev, A. V. & Shalaev, V. M. Metasurface holograms for visible light. Nature communications 4, 2807 (2013).
31 Yu, N. et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano letters 12, 6328-6333 (2012).
32 Ding, F., Wang, Z., He, S., Shalaev, V. M. & Kildishev, A. V. Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach. ACS nano 9, 4111-4119 (2015).
33 Aieta, F. et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano letters 12, 4932-4936 (2012).
34 Ni, X., Ishii, S., Kildishev, A. V. & Shalaev, V. M. Ultra-thin, planar, Babinet-inverted plasmonic metalenses. Light: Science & Applications 2, e72 (2013).
35 Khorasaninejad, M. et al. Achromatic metasurface lens at telecommunication wavelengths. Nano letters 15, 5358-5362 (2015).
36 Chen, X. et al. Dual-polarity plasmonic metalens for visible light. Nature communications 3, 1198 (2012).
37 Arbabi, E., Arbabi, A., Kamali, S. M., Horie, Y. & Faraon, A. Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules. Optica 3, 628-633 (2016).
38 Avayu, O., Almeida, E., Prior, Y. & Ellenbogen, T. Composite functional metasurfaces for multispectral achromatic optics. Nature communications 8, 14992 (2017).
39 Khorasaninejad, M. et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano letters 17, 1819-1824 (2017).
40 Wang, S. et al. Broadband achromatic optical metasurface devices. Nature communications 8, 187 (2017).
41 Arbabi, A. et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nature communications 7, 13682 (2016).
42 Lippmann, G. Epreuves reversibles donnant la sensation du relief. J. Phys. Theor. Appl. 7, 821-825 (1908).
43 Ives, H. E. Parallax panoramagrams made with a large diameter lens. JOSA 20, 332-342 (1930).
44 Adelson, E. H. & Wang, J. Y. Single lens stereo with a plenoptic camera. IEEE transactions on pattern analysis and machine intelligence 14, 99-106 (1992).
45 Ng, R. et al. Light field photography with a hand-held plenoptic camera. Computer Science Technical Report CSTR 2, 1-11 (2005).
46 Lumsdaine, A. & Georgiev, T. Full resolution lightfield rendering. Indiana University and Adobe Systems, Tech. Rep (2008).
47 Lumsdaine, A. & Georgiev, T. in Computational Photography (ICCP), 2009 IEEE International Conference on. 1-8 (IEEE).
48 Georgiev, T. & Lumsdaine, A. in Computer Graphics Forum. 1955-1968 (Wiley Online Library).
49 Zeller, N., Quint, F. & Stilla, U. Depth estimation and camera calibration of a focused plenoptic camera for visual odometry. ISPRS Journal of Photogrammetry and Remote Sensing 118, 83-100 (2016).
50 Zhu, S., Lai, A., Eaton, K., Jin, P. & Gao, L. On the fundamental comparison between unfocused and focused light field cameras. Applied optics 57, A1-A11 (2018).
51 Kim, M.-S., Scharf, T. & Herzig, H. P. Small-size microlens characterization by multiwavelength high-resolution interference microscopy. Optics express 18, 14319-14329 (2010).
52 Barker Jr, A. & Ilegems, M. Infrared lattice vibrations and free-electron dispersion in GaN. Physical Review B 7, 743 (1973).
53 Goldys, E. et al. Analysis of the red optical emission in cubic GaN grown by molecular-beam epitaxy. Physical Review B 60, 5464 (1999).
54 She, A., Zhang, S., Shian, S., Clarke, D. R. & Capasso, F. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift. Science Advances 4, eaap9957 (2018).
55 Tseng, J., Chen, Y., Pan, C., Wu, T. & Chung, M. Application of optical film with micro-lens array on a solar concentrator. Solar Energy 85, 2167-2178 (2011).
56 Sacco, A. et al. Dye-sensitized solar cell for a solar concentrator system. Solar Energy 125, 307-313 (2016).
57 Juska, G., Dimastrodonato, V., Mereni, L. O., Gocalinska, A. & Pelucchi, E. Towards quantum-dot arrays of entangled photon emitters. Nature Photonics 7, 527 (2013).
58 Gschrey, M. et al. Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography. Nature communications 6, 7662 (2015).
59 Di Lena, F. et al. in Quantum Technologies 2018. 106740H (International Society for Optics and Photonics).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19983-
dc.description.abstract視覺是生物感知周遭環境訊息的最重要的系統,與人類的一雙眼睛相比,昆蟲的視覺系統是由一個陣列的微小眼睛所組成的,又稱作複眼,如此的視覺系統具有較大的視野以及能夠估計物體深度的優勢,如此的特色已經吸引了人類的科技嘗試去發展類似的光學成像系統,例如光場相機。利用微透鏡陣列,我們可以將光束的位置以及行走(角度)的方向擷取出來,得到四維的光場資訊,再利用演算法得到物體的深度資訊,相較於一般的成像系統,只能得到光的二維位置資訊,四維的光場技術不僅可以得到物體的深度資訊,還能做到先拍照後聚焦的成像的功能。然而目前微透鏡陣列的製作技術上,例如電子顯微術、紫外光顯微術、光阻融化或是奈米壓印技術等等,越微小的微透鏡越無法精準的控制材料表面的曲率與品質的好壞,並且是無法做到任意的聚焦長度跟數值孔徑以及帶有色差與球差的缺點,這樣的問題目前是無法輕易地解決的。
如今新崛起的奈米光學技術,二微的超穎材料 - 超穎介面驚人的快速發展出許多非常輕薄短小的尖端光學元件,例如偏振轉換、非線性元件、全像片、超穎透鏡等等,但是源自於奈米天線共振以及繞射光學導致的嚴重色差使得超穎透鏡的實用性面臨一大考驗,然而近年來如此的可見光色差已經透過集體共振單元的特性得以消除,這項突破性的發展導致超穎透鏡的成像應用快速崛起。
在這篇論文中,我們利用非常輕薄的氮化鎵消色差超穎透鏡陣列(AMLA)去捕捉四維的光束資訊,並且利用演算法去得到不同成像面的影像以及物體的深度資訊,並且可以進一步地得到物體速度的資訊,消色差超穎透鏡陣列相較於傳統的微透鏡陣列具有許多優勢,例如消色差、無球差、品質穩定、焦距與數值孔徑可以任意設計、未來可直接與CMOS CCD直接以半導體製程整合的優勢。
zh_TW
dc.description.abstractVision is the most important system for living creature to perceiving surrounding environmental information. Compared with a human eyes, the insect's visual system is composed of an array of tiny eyes, also known as compound eyes. Such a visual system has a large field of view and the advantage of estimating the depth of the object. Such features have attracted human technology to try to develop similar optical imaging systems, such as light field cameras. The light field image records the position and direction information of light rays distributing in the target scene which can be captured by the use of microlens array. Compared with the conventional imaging system, four-dimensional light field imaging system can provide not only the two-dimensional intensity but also two-dimensional momentum information of light which enables the scene to be reconstructed with refocusing images and depth of objects. However, it is not easy to obtain the precise shaping and low defect microlens array or different forms (convex or concave) or arbitrary numerical aperture (NA) at one microlens array by most of fabrication processes such as electron beam lithography, UV- lithography, photoresist melting, nanoimprinting lithography and so on.
Metasurfaces, the two-dimensional metamaterials, have appeared as one of the most rapidly growing fields of nanophotonics. They have attracted extensive research interest because their exceptional optical properties and compact size can provide technical solutions for cutting-edge optical applications, such as imaging, polarization conversion, nonlinear components, and hologram. Recently, the chromatic aberrations of metasurface, resulting from the resonance of nanoantennas and the intrinsic dispersion of constructive materials, has been eliminated in visible region by using incorporating an integrated-resonant unit element. It gives rise to a burst of upsurge of imaging applications by using metalens.
Here, we propose a light field imaging system with an ultra-compact and flat GaN achromatic metalens array without spherical aberration to acquire four-dimensional light field information. Using this platform and rendering algorithm, we can get the reconstructed scene by a series of images with arbitrary focusing depths slice-by-slice and depth of objects. Compared with microlens array, the advantages of our metalens array are achromatism, spherical aberration free, focal length and numerical aperture can be arbitrarily designed, and can directly integrate with CMOS CCD by semiconductor fabrication process.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:38:23Z (GMT). No. of bitstreams: 1
ntu-107-R05245008-1.pdf: 4492229 bytes, checksum: d88d2c0793ccafb58f8d5c5921ba9a3d (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents國立臺灣大學碩士學位論文口試委員會審定書 I
致謝 II
中文摘要 III
Abstract IV
目錄 V
圖目錄 VI
第一章 表面電漿子、超穎材料與超穎介面之簡介 1
1-1 前言 1
1-2 表面電漿子 1
1-3 侷域表面電漿子 4
1-4 超穎材料 6
1-5 超穎介面 7
1-6 超穎透鏡 12
第二章 四維光場攝影術簡介與邏輯演算法 16
2-1 四維光場攝影術簡介 16
2-2 邏輯演算法 23
第三章 可見光消色差超穎透鏡陣列之設計 26
3-1 寬頻消色差超穎透鏡陣列的設計 26
3-2 寬頻消色差超穎透鏡陣列的製備 30
3-3 寬頻消色差超穎透鏡陣列的特性檢測 32
第四章 消色差超穎透鏡光場影像實驗量測結果與分析 34
4-1 光場影像數位對焦 34
4-2 光場影像的深度估算與全解析 38
4-3 寬頻消色差超穎透鏡陣列分辨率 41
第五章 結論與展望 44
參考文獻 45
dc.language.isozh-TW
dc.title消色差超穎透鏡陣列之光場影像zh_TW
dc.titleAchromatic metalens array for
light field image
en
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee藍永強(Yung-Chiang Lan),任貽均(Yi-Jun Jen),廖駿偉(Jiunn-Woei Liaw)
dc.subject.keyword超穎介面,光場,氮化鎵消色差超穎透鏡,距離估算,先拍照後對焦,zh_TW
dc.subject.keywordMetasurfaces,Light field,GaN achromatic metalens,Distance estimation,Refocusing,en
dc.relation.page47
dc.identifier.doi10.6342/NTU201801449
dc.rights.note未授權
dc.date.accepted2018-07-19
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用物理研究所zh_TW
顯示於系所單位:應用物理研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
4.39 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved