Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19935
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林巍聳
dc.contributor.authorPo-Jen Laien
dc.contributor.author賴博仁zh_TW
dc.date.accessioned2021-06-08T02:28:06Z-
dc.date.copyright2015-08-25
dc.date.issued2015
dc.date.submitted2015-08-17
dc.identifier.citation1. Pareto, V. 1906 , Manual of political economy. 1971, New York,: A. M. Kelley.11 xii, 504 p.
2. Zadeh, L.A. 1963: Optimality and non-scalar-valued performance criteria. IEEE Trans. Autom. Control AC-8, 59–60
3. Steuer, R.E. 1989: Multiple Criteria Optimization: Theory, Computation, and Application. Malabar: Robert E. Krieger Publishing
4. Eschenauer, H.; Koski, J.; Osyczka, A. (eds.) 1990: Multicriteria Design Optimization Procedures and Applications. Berlin: Springer-Verlag
5. Koski, J.; Silvennoinen, R. 1987: Norm methods and partial weighting in multicriterion optimization of structures. Int. J. Numer. Methods Eng. 24, 1101–1121
6. Goldberg, D.E. 1989: Genetic Algorithms in Search, Optimization and Machine Learning. Reading: Addison-Wesley
7. Fonseca, C. M., Multiobjective genetic algorithms with application to control engineering problems. Ph.D. Thesis, University of Sheffield, Sheffield, U.K., 1995.
8. Fonseca, C. M. and P. J. Fleming, Multiobjective optimization and multiple constraint handling with evolutionary algorithms Part I: a unified formu -lation. IEEE Transactions on Systems, Man, & Cybernetics, Part A: Systems & Humans, 28, 26-37, 1998.
9. Suppapitnarm, A., Seffen, K. A., Parks, G. T. and Clarkson, P. J. (2000). 'Simulated annealing: An alternative approach to true multiobjective optimization.' Engineering optimization 33(1): 59 – 85.
10. Andersson, J., A survey of multiobjective optimization in engineering design. Technical report LiTH-IKP-R-1097, Department of Mechanical Engineer -ing, Linköping University, Linköping, Sweden, 2000.

11. R. E. Bellman and L. A. Zadeh, 'Decision-making in a fuzzy environment,' Management Sci., vol. 17, pp. B-141-B-164, 1970.
12. C. A. Coello, D. A. Van Veldhuizen, and G. B. Lamont. Evolutionary Algori -thms for Solving Multi-Objective Problems. Kluwer Academic Publishing, New York, 1st edition, 2002.
13. K. Miettinen. Nonlinear Multiobjective Optimization. Kluwer Academic Publishing, Massachusettes, 1st edition, 1999.
14. Porter, Gloria L. Multiobjective Optimal Control Methodology for the Analysis of Certain Sociodynamic Problems. ProQuest, 2009.
15. J. Jahn. Vector Optimization: Theory, Applications, and Extensions. Springer-Verlag, Berlin, 2004.
16. W.-S. Lin, 'Optimality and convergence of adaptive optimal control by reinforcement synthesis,' Automatica, vol. 47, pp. 1047-1052, 5// 2011.
17. L. A. Zadeh, 'Fuzzy sets,' Information and Control, vol. 8, pp. 338-353, 6// 1965.
18. R. Kruse, J. Gebhardt, and F. Klawonn, Foundations of fuzzy systems: Wiley & Sons, 1994.
19. L.-X. Wang, A Course in Fuzzy Systems and Control: Prentice Hall, 1997.
20. Regneri, Mario, et al. 'Fuzzy decision making for multi-criteria optimization in integrated wastewater system management.' 6th International Conference on Sewer Processes and Networks. 2010.
21. F. L. Lewis, D. Vrabie, and V. L. Syrmos, Optimal Control: Wiley, 2012.
22. 張晉棠, '適應最佳控制為基礎之工業控制系統循序優化技術,' 碩士, 電機工程學研究所, 國立臺灣大學, 2011.
23. D. V. Prokhorov and D. C. Wunsch, 'Adaptive critic designs, 'Neural Networks, IEEE Transactions on, vol. 8, pp. 997-1007, 1997.
24. 賴昇甫, '仿射非線性系統之適應最佳追蹤控制器設計,' 碩士, 電機工程學研究所, 國立臺灣大學,2013
25. 戴念儒, '電動車高效率牽引系統之自優化模糊PID控制器設計,' 碩士, 電機工程學研究所, 國立臺灣大學,2013
26. T. Poggio and F. Girosi, 'Networks for approximation and learning,' Proceedings of the IEEE, vol. 78, pp. 1481-1497, 1990.
27. S. S. Haykin, Neural Networks: A Comprehensive Foundation: Prentice Hall International, 1999.
28. Paul V. Yee, Simon Haykin, Regularized Radial Basis Function Networks: Theory and Applications, 1 ed.: Wiley-Interscience, 2001.
29. C. C. Chan and K. T. Chau, Modern Electric Vehicle Technology: Oxford University Press, 2001.
30. PJ. T. Pukrushpan, A. G. Stefanopoulou, and H. Peng, 'Control of fuel cell breathing,' IEEE Control Syst. Mag, vol. 24, no. 2, pp. 30-46, Apr. 2004.roblem
31. A. M. Dhirde, N. V. Dale, H. Salehfar, A. D. Mann, and T.-H. Han, 'Equivalent electric circuit modeling and performance analysis of a PEM fuel cell stack using impedance spectroscopy,' IEEE Trans. on Energy Conversion, vol. 25, pp. 778-786, 2010.
32. S. V. Puranik, A. Keyhani, and F. Khorrami, 'State-space modeling of proton exchange membrane fuel cell,' IEEE Trans. on Energy Conversion, vol. 25, pp. 804-813, 2010.
33. S. M. Lambert, V. Pickert, J. Holden, X. He, and W. Li, 'Comparison of supercapacitor and lithium-ion capacitor technologies for power electronics applications,' in 5th IET International Conference on Power Electronics, Machines and Drives, Bringhton, UK, 2010, pp. 1-5.
34. W.-S. Lin and C.-H. Zheng, 'Energy management of fuel cell/ultracapacitor hybrid power system using an adaptive optimal-control method,' Elsevier, Journal of Power Sources, vol.196, pp. 3280-3289, 2011
35. United States Environmental Protection Agency. (2013). Dynamometer Drive Schedule Quick View.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19935-
dc.description.abstract多目標優化考慮系統有兩個或兩個以上優化目標的問題,傳統求解多目標優化問題大都採用權重法或基因演算法,但是權重法無法處理不同偏好的情況,基因演算法很難應用於即時優化控制,本論文採用模糊決策適應型最佳控制法求解多目標優化問題,適應型最佳控制法用成本函數表示優化的目標,再根據極小值原理和強化學習架構順向求解最佳控制訊號。適應型最佳控制法採用成本函數引導控制器的優化方向,多目標優化問題可以用許多子目標組成成本函數,子目標的相對權重表示其重要程度,相對權重會影響優化的結果,但是固定的相對權重不能適應環境改變或決策因子改變的情況。本論文採用模糊邏輯調整子目標的相對權重,可以針對環境改變或決策因子改變自動調整相對權重,然後針對多目標最佳化問題建立模糊決策適應型最佳控制法的求解步驟,並以混合能源燃料電池電動車的燃料利用最佳化和儲電系統的蓄電狀態監控做驗證,子目標的相對權重隨著車速和儲電系統的蓄電狀態自動調整,使儲電系統在不同車速的情況下都能夠提供加速所需的電功率或減速時提供吸收再生電功率所需的儲能空間,使混合能源電動車達成高效率的操作。zh_TW
dc.description.abstractMulti-objective optimization concerns about optimization problems involving more than one objective function to be optimized simultaneously. Conventionally, multi-objective optimization problems are solved by the weighted-sum approach or the genetic algorithm. However, the weighted-sum approach is not able to deal with situations concerning different preference, and the genetic algorithm is hard to use in real-time optimization and control. This thesis proposes the fuzzy decision adaptive optimal control algorithm to solve the multi-objective optimization problem. The objective of optimization is defined to minimize a cost function which is the fuzzy association of many individual cost functions. The fuzzy association can adapt the weight of each individual cost function to changes in the environmental condition or decision making factor. Then, optimization is achieved by implementing the adaptive optimal control algorithm to minimize the cost-to-go until getting a convergent result. The proposed fuzzy decision adaptive optimal control algorithm is verified in the energy management of a fuel-cell hybrid vehicle. It is shown that, by introducing the fuzzy association, the cost function for energy management can adapt to the vehicle speed and the state of charge (SoC) of the energy storage system (ESS). Thus, the optimal energy management strategy will maintain a higher SoC at a lower speed that prepares the ESS to supply power for acceleration. Conversely, the optimal energy management strategy will maintain a lower SoC at a higher speed that prepares the ESS to retrieve regenerated power.en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:28:06Z (GMT). No. of bitstreams: 1
ntu-104-R02921065-1.pdf: 3185597 bytes, checksum: 199d9efdf64d49125ff13331ca308871 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 ix
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 論文架構 3
第二章 多目標優化問題 4
2.1 問題描述 4
2.2 柏拉圖最佳解 5
2.3 權重法 8
2.3.1 數學描述 8
2.3.2 權重法的限制 8
2.4 基因演算法 9
2.4.1 基因演算法的演算流程 9
2.4.2 基因演算法的限制 11
第三章 模糊決策與適應型最佳控制 12
3.1 模糊理論 13
3.1.1 模糊理論簡介 13
3.1.2 模糊化 15
3.1.3 模糊知識庫 17
3.1.4 模糊推理引擎 19
3.1.5 解模糊化 20
3.2 模糊決策 21
3.3 適應型最佳控制 23
3.3.1 最佳控制簡介 23
3.3.2 最佳控制的必要條件 26
3.3.3 適應型最佳控制之自優化策略 28
3.3.4 適應型最佳控制之自優化流程 29
3.4 幅狀基底函數類神經網路(RBFNN) 33
3.4.1 幅狀基底函數類神經網路架構 34
3.4.2 幅狀基底函數類神經網路的學習策略 37
3.4.3 誤差倒傳遞演算法 39
3.5 模糊決策適應最佳控制器設計 40
3.5.1 適應型最佳控制的多目標優化策略 40
3.5.2 模糊決策適應最佳控制的訓練流程 44
第四章 模糊決策適應控制在車輛能量管理系統之應用 48
4.1 混合能源燃料電池電動車簡介 48
4.2 混合能源燃料電池電動車系統模型 49
4.2.1 燃料電池模型 49
4.2.2 鋰離子超電容模型 51
4.3 混合能源燃料電池電動車能量管理系統 53
4.3.1 混合能源燃料電池電動車能量管理系統模型 53
4.3.2 混合能源燃料電池電動車能量管理系統之模擬驗證 58
4.3.3 固定權重能量管理策略之比較 63
第五章 結論與未來展望 66
5.1 結論 66
5.2 未來展望 67
參考文獻 68
dc.language.isozh-TW
dc.title多目標優化問題之模糊決策適應最佳控制器設計zh_TW
dc.titleDesign of Fuzzy Decision Adaptive Optimal Controller for Multi-objective Optimization Problemsen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊棧雲,廖德誠,張國維
dc.subject.keyword多目標優化,適應型最佳控制,能量管理,zh_TW
dc.subject.keywordMulti-objective optimization,Adaptive optimal control algorithm,Energy management,en
dc.relation.page71
dc.rights.note未授權
dc.date.accepted2015-08-17
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
3.11 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved