請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19890完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳信志 | |
| dc.contributor.author | Sou-Fu Chen | en |
| dc.contributor.author | 陳碩甫 | zh_TW |
| dc.date.accessioned | 2021-06-08T02:25:22Z | - |
| dc.date.copyright | 2015-08-20 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-18 | |
| dc.identifier.citation | Anderson, S., Bankier, A.T., Barrell, B.G., de Bruijn, M.H.L., Coulson,A.R., and I. G. Young. 1981. Sequence and organization of the human mitochondrial genome. Nature 290:457–464.
Anderson, S., de Bruijn, M.H.L., Coulson, A.R., Eperon, I.C., Sanger, F., I.G. Young. 1982. Complete sequence of bovine mitochondrial DNA: conserved features of the mammalian mitochondrial genome. J. Mol. Evol 156:683–717. Arnason, U., Gullberg, A., 1996. Cytochrome b nucleotide sequences and the identification of five primary lineages of extant cetaceans. Mol. Biol. Evol. 13, 407–417. Baird, G.S., D.A. Zacharias, R.Y. Tsien. 2000. Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. Proc. Natl. Acad. Sci. USA 97:11984-11989. Bergmann R. 2004. Red Fluorescent Protein from a Discosoma coral. University of Hamburg. Bradley D.G., MacHugh E.E., Cunningham P., Loftus R.T. 1996. Mitochondrial diversity and origin of African and European cattle. Proceedings of the National Academy of Sciences of the United States of America 93:5131–5. Campbell, R.E. 2002. A Monomeric Red Fluorescent Protein. Proc. Natl. Acad. Sci. USA 99:7877-7882. Chao, J. T., and K. Y. Fang. 1988. A preliminary study on the biology of Formosan wild pig, Sus scrofa taivanus. Taiwan J. Forest Sci. 3:353–362. (in Chinese) Cheng, W. H., Chu, H.P., Jiang, Y.N., Li, S.H., Wang, Y., Chen, C.H., Chen, K.J., Lin, C.Y., and Y. T. Ju. Genetic variation and phy- logenetics of Lanyu and exotic pig breeds in Taiwan analyzed by nineteen microsatellite markers. J. Anim. Sci. In press. doi:10.2527/jas.2007-0562 Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W., D.C. Prasher. 1994. Green Fluorscent Protein as a Marker for Gene Expression. Science 263:802-805. Chyr, S. C., Lin, K.J., Chang, H.L., Yang, T.S., and H. T. Yen. 2001. Guidelines in Animal Science—Swine Production. Chin. Soc. Anim. Sci. Publisher, Taipei, Taiwan. Cormack, B.P., Valdivia, R.H., Falkow, S. 1996. FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173, 33–38. Dove, S.G., M. Takabayashi, O. Hoegh-Guldberg. 1995. Isolation and Partial Characterization of the Pink and Blue Pigments of Pocilloporid and Acroporid Corals. Biol. Bull. 189:288-297 Gerber, A. S., Loggins, R., Kumar, S., T. E. Dowling. 2001. Does nonneutral evolution shape observed patterns of DNA variation in animal mitochondrial genomes? Annu. Rev. Genet. 35:539– 566. Gongora, J., Fleming, P., Spencer, P.B.S., Mason, R., Garkavenko, O., Meyer, J.N., Droegemueller, C., Lee, J.H., C. Moran. 2004. Phylogenetic relationships of Australian and New Zealand feral pigs assessed by mitochondrial control region sequence and nuclear GPIP genotype. Mol. Phylogenet. Evol. 33: 339-348. Gross, L.A., Baird, G.S., Hoffman, R.C., Baldridge, K.K., R.Y. Tsien. 2000. The Structure of the Chromophore within DsRed, a Red Fluorescent Protein from Coral. Proc. Natl. Acad. Sci. USA 97(22):11990-11995. Hawley, T.S., Telford, W.G., Ramezani, A., R.G. Hawley. 2001. Four-color flow cytomet- ric detection of retrovirally expressed red, yellow, green, and cyan fluorescent pro- teins. BioTechniques 30, 1028–1034. Heim, R., Cubitt, A.B. Tsien, R.Y.1995. Improved green fluorescence. Nature 373, 663–664. Hein, J., and J. Stovlbaek. 1996. Combined DNA and protein alignment. Methods Enzymol..266:402–418. Honeycutt, R.L., Adkins, R.M., 1993. Higher level systematics of eutherian mammals: an assessment of molecular characters and phylogenetic hypotheses. Annu. Rev. Ecol. Syst. 24:279–305. Huang, Y.F., Shi, X.W., Zhang, Y.P. 1999. Mitochondrial genetic variation in Chinese pigs and wild boars. Biochem. Genet. 37: 335-343. Irwin, D.M., Kocher, T.D., A.C. Wilson. 1991. Evolution of the cyto- chrome b gene of mammals. J. Mol. Evol. 32:128–144. Jakobs, S., Subramaniam, V., Schonle, A., Jovin, T.M. and Hell, S.W. 2001. EGFP and DsRed expressing cultures of Escherichia coli imaged by confocal, two-photon and fluorescence lifetime microscopy. FEBS Lett. 479, 131–135. Jiang, Y.N., Wu, C.Y., Huang, C.Y., Chu, H.P., Ke, M.W., Kung. M.S., Li, K.Y., Wang, C.H., Li, S.H., Wang, Y., Y.T. Ju. 2008. Interpopulation and intrapopulation maternal lineage genetics of the Lanyu pig (Sus scrofa) by analysis of mitochondrial cytochrome b and control region sequences. J. Anim. Sci. 86:2461-2470. Kijas, J.M.H., L.A. Anderson. 2001. Phylogenetic study of the origin of the domestic pig estimated from the near-complete mtDNA genome. J. Mol. Evol. 52:302-308. Kim. K.I., Lee, J.H., Li, K., Zhang, Y.P., Lee S.S., Gongora, J., C. Moran. 2002. Phylogenetic relationships of Asian and European pig breeds determined by mitochondrial DNA D-loop sequence poly- morphism. Animal Genetics 33:19–25. Larson, G., Cucchi, T., Fujita, M., Matisoo-Smith, E., Robins, J., Anderson, A., Rolett, B., Spriggs, M., Dolman, G., Kim, T.H., Thuy, N.T.D., Randi, E., Doherty, M., Due, R.A., Bollt, R., Djubiantono, T., Griffin, B., Intoh, M., Keane, E., Kirch, P., Li, K.T., Morwood, M., L. M. Pedrina, P. J. Piper, R. J. Rabett, P. Shooter, G. Van den Bergh, E. West, S. Wickler, J. Yuan, A. Cooper, and K. Dobney. 2007. Phylogeny and ancient DNA of Sus provides insights into neolithic expansion in island Southeast Asia and Oceania. Proc. Natl. Acad. Sci. USA 104:4834–4839. Lauf, U., Lopez, P., Falk, M.M. 2001. Expression of fluorescently tagged connexins: a novel approach to rescue function of oligomeric DsRed-tagged proteins. FEBS Lett. 498, 11–15. Lin, C.S., Liu, C.Y., H.T. Wu. 1995. Isolation of mitochondrial DNA from the visceral organs and muscle tissue of pigs by sucrose gradi- ent centrifugation. J. Chin. Soc. Anim. Sci. 24, 125–138. Lucchini, V., Meijaard, E., Doing, C. H., Groves, C. P., E. Randi. 2005. New phylogenetic perspectives among species of South- east Asian wild pig (Sus spp.) based on mtDNA sequences and morphometric data. J. Zool. (Lond.) 266:25–35. Matz, M.V. 1999. Fluorescent Proteins from Nonbioluminescent Anthozoa species. Nature Biotechnology 17:969-973. MacKay, S.L.D., Ghivizzani, S.C., Madsen, C.S., Tanhauser, S.M., Laipis, P.J., W.W. Hauswirth. 1993. Transcribed heteroplasmic repeated sequences in the porcine mitochondrial DNA D-loop region. J. Mol. Evol. 37, 36–47. Mizuno, H., Sawano, A., Eli, P., Hama, H., A. Miyawaki. 2001. Red Fluorescent Protein from Dicosoma as a Fusion Tag and a Partner for Fluorescence Resonance Energy Transfer. Journal of Cellular Physiology 77:313-318. Saccone, C., Gissi, C., . Lanave , C., Larizza , A., Pesole, G., A. Reyes. 2000. Evolution of the mitochondrial genetic system: An over- view. Gene 261:153–159. Sanger, F., 1981. Determination of nucleotide sequences in DNA. Science 214:1205–1210. Saunders, M. A., S. V. Edwards. 2000. Dynamics and phylogenetic implications of mtDNA control region sequences in New World Jays (Aves: Corvidae). J. Mol. Evol. 51:97–109. Savage, D.E., Russell, D.E., 1983. Mammalian Paleofaunas of the World. Addison-Wesley, Reading, MA. Schmidt, H. A., Strimmer , K., . Vingron, M., A. von Haeseler. 2002. TREE-PUZZLE: Maximum likelihood phylogenetic analysis us- ing quartets and parallel computing. Bioinformatics 18:502– 504. Shaner, N.C. 2004. Improved Monomeric Red, Orange and Yellow Fluorescent Proteins Derived from Dicosoma Sp. Red Fluorescent Protein. Nature Biotechnology 22:1567-1572. Smith, M.F., Patton, J.L., 1991. Variation in mitochondrial cytochrome b sequence in natural populations of South American akodontine rodents (Muridae: Sigmodontinae). Mol. Biol. Evol.8, 85–103. Strongin. D.E., Bevis, B., Khuong, N., Downing, M.E., Strack, R.L., Sundaram, K., Glick, B.S., R.J. Keenan. 2007. Structural rearrangements near chromophore influence the maturation speed and brightness of DsRed variants. Protein Engineering, Design & Selection 20(11):525-534. Stoneking, M., H. Soodyall. H. 1996. Human evolution and the mito- chondrial genome. Curr. Opin. Genet. Dev. 6:731–736. Su B., Jin L., Underhill P. et al. (2000) Polynesian origins: insights from the Y chromosome. Proceedings of the National Academy of Sciences of the United States of America 97,8225–8. Sullivan, K.F. & Kay, S.A. 1999. Green fluorescent proteins. Vol. 58, Methods in Cell Biology. Ursing, B. M., U. Arnason. 1998. The complete mitochondrial DNA sequence of the pig (Sus scrofa). J. Mol. Evol. 47:302–306. Wu, C.Y., Y.N. Jiang., H.P. Chu., S.H. Li., Y. Wang., Y.H. Li., Chang, Y., Y.T. Ju. 2007. Type I Lanyu pig has a maternal genetic lineage distinct from Asian and European pigs. Anim. Genet. 38:499–505. Wall, M.A., Socolich, M., Ranganathan, R. 2000. The structural basis for red fluorescence in the tetrameric GFP homolog DsRed. Nat. Struct. Biol. 7, 1133–1138. Watanobe, T., Okumura, N., Ishiguro, N., Nakano, M., Matsui, A., Sahara, M., M. Komatsu. 1999. Genetic relationship and distri- bution of the Japanese wild boar (Sus scrofa leucomystax) and Ryukyu wild boar (Sus scrofa riukiuanus) analysed by mito- chondrial DNA. Mol. Ecol. 8:1509–1512. Watanobe T., Ishiguro N., Nakano M., Takamiya H., Matsui A. & Hongo H. 2002. Prehistoric introduction of domestic pigs onto the Okinawa Islands: ancient mitochondrial DNA evidence. Journal of Molecular Evolution 55:222–31. Yang, J., Wang, J., Kijas, J., Liu, B., Han, H., Yu, M., Yang, H., Zhao, S., K. Li. 2003. Genetic diversity present within the near-complete mtDNA genome of 17 breeds of indigenous Chinese pigs. J. Hered. 94:381–385. Yarbrough, D., Wachter, R.M., Kallio, K., Matz, M.V., S.J. Remington . 2001. Refined crystal structure of DsRed, a red fluorescent protein from coral, at 2.0-A resolution. Proc. Natl. Acad. Sci. USA 98(2):462-467 Yen, N. T., Lin, C. S., Ju, C. C., Wang S. C., M.C. Huang. 2007..Mitochondrial DNA polymorphism and determination of effects on reproductive trait in pigs. Reprod Domest. Anim. 42(4):387-92. Yen, N. T., Liaw, R. B., Chang, H. L., M. C. Wu. 2006.Variation of Mitochondrial DNA Sequence among Nine Breeds of Pigs.; XIIth AAAP Congress Proceedings-Abstracts:380. 薛佑玲、張秀鑾、吳松鎮、吳明哲。1994。純種與雜種豬之雌親粒線體遺傳鑑別。畜產研究 27(1):31~43。 簡嘉瑩、廖仁寶、顏念慈、朱賢斌、吳明哲。2004。應用粒線體 DNA D-loop 序列進行豬品種演化分析。中畜會誌 33(4):120。 陳佳萱、楊琇雅、顏念慈、朱賢斌、陳坤照、吳明哲、黃木秋。2006a。蘭嶼豬粒線體細胞色素氧化酶第一次單元基因全長定序。中畜會誌 35(4):44。 陳佳萱、楊琇雅、顏念慈、朱賢斌、陳坤照、吳明哲、黃木秋。2006b。種豬的粒線體細胞色素 b 基因序列鑑定及親緣關係。中畜會誌 35(4):45。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19890 | - |
| dc.description.abstract | 自從發現來自珊瑚的Discosoma striata開始,這個通稱DsRed的螢光蛋白質便被大量應用至生物醫學等相關試驗研究上。DsRed的光譜範圍在500 ~ 583 nm之間,而其波峰在558 nm。紅色螢光蛋白因具有快速成熟、在動物體內辨識度較高以及對於pH值具有較佳的容忍力等優點,因此適合應用於配合其他螢光蛋白之多重顏色標定等實驗上。在先前的研究中,我們透過原核胚顯微注射已成功產製出帶有單體紅色螢光蛋白質基因之轉殖家豬。雖然家豬(Sus scrofa domesticus or Sus domesticus)可做為一種優秀的實驗動物,然其平均體型實驗操作而言仍過於龐大,6月齡時即可達到90公斤,相較於其他較小型實驗動物例如嚙齒類之維持成本以及體型龐大所帶來之試驗操作不便等問題,皆為以大型家豬為實驗動物尚有許多改進空間。因此,近年來以較小型豬隻如蘭嶼豬作為人類疾病相關研究之模式動物,有逐年上升之趨勢。此外,在大部分多細胞有機體中,粒線體DNA皆為母系遺傳,粒線體DNA被廣泛地運用於種源鑑定以及物種間基因親緣關係之判定。本研究之目的為表現紅色螢光蛋白質迷你豬之育成及其粒線體DNA分析。
本研究中,帶有單體紅色螢光蛋白質基因之洋種豬公豬與台灣大學育成之李宋品系母豬被用來雜交,從而產生表現紅色螢光蛋白質之小型化子代螢光豬。採集子代之細胞樣本並分離出DNA,經由PCR分析三組引子對序列之產物: DsRed (780bp)為單體紅色螢光蛋白質基因之偵測、mtDNA控制區為粒線體DNA中最具多型性之區域以及細胞色素-b (1308bp)為種間以及種內之種源關係鑑定之常用序列。 經PCR後之DsRed分析結果,顯示G1, G2, G3及G4之子代皆部分帶有單體紅色螢光蛋白質基因,且平均之性腺傳承率為67%。兩組具有蘭嶼豬專一性之粒線體DNA引子對分析結果則顯示包括G1, G2, G3及G4等各子代分別皆為蘭嶼品系之延伸。以上結果顯示子代不管是否帶有單體紅色螢光蛋白質基因,其皆證實為蘭嶼品系之延伸;G1到G3之子代在20週齡之平均體重有穩定下降之趨勢,其中G2之體重較G1下降76%,而G3則較G2之平均體重下降59%,以上結果意味著我們已經成功將表現紅色螢光蛋白質之轉殖豬迷你化,而進一步比對G3以及蘭嶼豬之間的體型參數 (8週齡與20週齡之體長、體高、體重) 則顯示G3已經符合”迷你豬”的標準範圍。 綜觀上述,本研究論文除成功產出表現紅色螢光蛋白之蘭嶼品系基因轉殖豬外,此等表現紅色螢光蛋白之迷你豬具有可提供作為生物醫學研究之模式動物之潛能。 | zh_TW |
| dc.description.abstract | DsRed, an Anthozoa-derived fluorescent protein with an excitation spectrum at 500 ~ 583 nm and a major peak at 558 nm has become a widely applied tool in the field of biomedical research. It has advantages such as faster maturation, less autofluorescence in animal tissues and better resistance to pH, making it ideal for multi-label colouring and dual-colour experiments with other fluorescent proteins. With the application of pronucleus injection, we were able to generate pigs harbouring the Ds-Red monomer protein. However, although the domestic pig (Sus scrofa domesticus or Sus domesticus) represents a great model animal, the size and weight of a regular pig (90 kg at 6 months), the expenses compared to smaller animals such as rodents and the difficulty of manipulation still pose a disadvantage. Hence, using smaller pigs such as the Lanyu-pig as an animal for human disease model has increased in numbers during the recent years.
In most multicellular organisms, mtDNA is inherited from the mother (maternally inherited). Mechanisms for this include simple dilution, degradation of sperm mtDNA in the fertilized egg, and, at least in a few organisms, failure of sperm mtDNA to enter the egg. Whatever the mechanism is, this single parent (uniparental) pattern of mtDNA inheritance is found in most animals. In recent years, mtDNA has been widely used for phylogenetic studies to estimate the genetic relationship among mammalian species. The objective of this study is to breed a new strain of miniature pigs harbouring the DsRed monomer protein and the analysis of the mitochondrial DNA. For this study, male European domesticated pigs expressing the DsRed protein and female Lanyu-derived strain were utilized to breed a cross-hybrid offspring of miniature pigs expressing the DsRed monomer protein. Fibroblast cells of each generation was cultured for further total DNA extraction and three sets of primers were designed for PCR analyses: DsRed (780 bp), for detection of the DsRed monomer, mtDNA Control Region (1380 bp), which is an area of non-coding DNA and is the most polymorphic region of the mtDNA genome, and mtDNA cytochrome B (1308 bp), which is commonly used to determine phylogenetic relationships within families and genera. PCR analysis using the DsRed primer show that some of the offspring from the four relating generations G1, G2, G3 and G4 harbouring the DsRed monomer protein gene, with an average germ-line transmission rate at 67%. The two pairs of mtDNA primers, which are Lanyu specific, showed that the progenies to be Lanyu derived, whether or not harbouring the DsRed monomer protein gene. Steady decrease of body weight at 20 weeks age from G1 to G3, with G2 showing a 76% decrease in body weight compared to G1, and G3 showing a 59% decrease in body weight compared to G2, imply the Ds-Red transgenic line was successfully miniaturized. Further compare the physiological parameter (body length, height, weight, at 8th and 20th week) between G3 and Lanyu pig indicates that G3 offspring fit the description of a “mini-pig”. Taken above, the data show successful breeding of Lanyu-derived pig expressing the DsRed monomer protein, indicating this new breed of DsRed-miniature pigs possess potentials for use as a new model animal in the field of biomedical studies and application. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T02:25:22Z (GMT). No. of bitstreams: 1 ntu-104-R98626014-1.pdf: 11438631 bytes, checksum: 0404efee189e3b3833df502d4520e285 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員審定書 .............................................................................................................. i
誌謝 ................................................................................................................................. ii 中文摘要 ........................................................................................................................ iii 英文摘要 ………………………………………………………………………………. v 目錄 ............................................................................................................................... vii 圖目錄 ……………………..………………………………………………………….. x 表目錄 ……………………..…………………………………………………………. xii 第1章 前言 .................................................................................................................... 1 第2章 文獻檢討 ………………………………………………………………...……. 2 2.1 螢光蛋白之介紹 …………………...………………………………………… 2 2.1.1 紅色螢光蛋白 …………………...…………………………………… 2 2.1.2 螢光蛋白質於轉殖基因動物之應用 ……………...………………… 3 2.2 大型實驗動物 …………...…………………………………………………… 4 2.2.1 台灣本地與外來豬隻品種之介紹 ……………………………...…… 4 歐美品種 ……................………………………………………………………. 4 (一) 約克夏 ……………………………………………………………………. 4 (二) 蘭瑞斯 ……………………………………………………………………. 5 (三) 杜洛克 ……………………………………………………………………. 5 亞洲品種 ……...………….............………………………………….………… 5 (一) 蘭嶼豬 ……………………………………………………………………. 5 (二) 李宋豬 ……………………………………………………………………. 6 (三) 賓朗豬 …………………........................................………………………. 6 2.3 分子遺傳標記(Molecular marker) …………..…………….…………………. 6 2.3.1 體染色體 (Autosome) …………………………………….……………. 7 2.3.2 性染色體 (Sex chromosome) ……………………………….………….. 7 頁次 2.3.3 粒線體DNA (Mitochondrial DNA, mtDNA) …………………………. 7 第3章 材料與方法 ........................................................................................................ 9 3.1 小耳種迷你紅色螢光豬之產製 ………….......……………………………… 9 3.1.1 配種系統 ……..........…………………………………………………… 9 3.1.2 配種方式 ……………..………………………………………………... 9 3.1.3 發情之判定 ……...……………………………………………………... 9 3.2 紅色螢光之偵測 ……......………………………………………………….. 10 3.3 纖維母細胞細胞之培養 …......…………………………………………….. 10 3.4 纖維母細胞之繼代及保存 ………………………….....………………...… 12 3.5 DNA之萃取 …………......………………………………………………… 12 3.6 聚合酶連鎖反應 ………………………......……………………………….. 14 3.6.1 單體紅色螢光蛋白基因之偵測 ………..…...……………………...… 14 3.6.2 粒線體DNA控制區及細胞色素-b之偵測 …….…………………… 14 3.7 體型參數 ……………......…………………………………………………. 15 第4章 結果 .................................................................................................................. 16 4.1 紅色螢光之偵測 ………………………........………………………………. 16 4.2 聚合酶連鎖反應 ……........…………………………………………………. 16 4.2.1 單體紅色螢光蛋白基因之偵測 ………….…………....……………....16 4.2.2 粒線體DNA控制區及細胞色素-b之偵測 ………….……………… 18 4.3 系譜之繪製 …………………………........………………………………….. 18 4.4 體型參數 ………………........……………………………………………….. 18 4.4.1 平均窩仔數 ………….……...………………………………………... 18 4.4.2 體重 …………………………………………………………………... 19 4.4.3 體長與體高 …………....……………………………….…………..… 20 4.4.4 繁殖參數 ……………………………………………………………... 20 頁次 第5章 綜合討論 .......................................................................................................... 21 第6章 結論 .................................................................................................................. 22 參考文獻........................................................................................................................ 52 | |
| dc.language.iso | zh-TW | |
| dc.title | 表現紅色螢光蛋白質迷你豬之育成及其粒線體DNA分析 | zh_TW |
| dc.title | Breeding of Lanyu-derived miniature pigs harbouring the Ds-Red gene and its mtDNA analysis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄭登貴,彭卲于 | |
| dc.subject.keyword | 紅色螢光蛋白質,小型化,蘭嶼品系迷你豬,粒線體DNA, | zh_TW |
| dc.subject.keyword | Ds-Red,miniaturization,Lanyu-derived pig,mitochondrial DNA (mtDNA), | en |
| dc.relation.page | 59 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2015-08-18 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
| 顯示於系所單位: | 動物科學技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 11.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
