Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19879
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor嚴震東(Chen-Tung Yen)
dc.contributor.authorWen-Hua Chuen
dc.contributor.author朱玟樺zh_TW
dc.date.accessioned2021-06-08T02:24:44Z-
dc.date.copyright2015-08-25
dc.date.issued2015
dc.date.submitted2015-08-18
dc.identifier.citationAbdelaziz, D. M., Stone, L. S., & Komarova, S. V. (2014). Osteolysis and pain due to experimental bone metastases are improved by treatment with rapamycin. Breast Cancer Res Treat, 143(2), 227-237. doi: 10.1007/s10549-013-2799-0
Al-Hasani, R., & Bruchas, M. R. (2011). Molecular mechanisms of opioid receptor-dependent signaling and behavior. Anesthesiology, 115(6), 1363-1381. doi: 10.1097/ALN.0b013e318238bba6
Apkarian, A. V., Hashmi, J. A., & Baliki, M. N. (2011). Pain and the brain: specificity and plasticity of the brain in clinical chronic pain. Pain, 152(3 Suppl), S49-64. doi: 10.1016/j.pain.2010.11.010
Arguello, F., Baggs, R. B., & Frantz, C. N. (1988). A murine model of experimental metastasis to bone and bone marrow. Cancer Res, 48(23), 6876-6881.
Baron, R. (2009). Neuropathic pain: a clinical perspective. Handb Exp Pharmacol(194), 3-30. doi: 10.1007/978-3-540-79090-7_1
Baumgartner, U., Buchholz, H. G., Bellosevich, A., Magerl, W., Siessmeier, T., Rolke, R., . . . Schreckenberger, M. (2006). High opiate receptor binding potential in the human lateral pain system. Neuroimage, 30(3), 692-699. doi: 10.1016/j.neuroimage.2005.10.033
Bendre, M. S., Margulies, A. G., Walser, B., Akel, N. S., Bhattacharrya, S., Skinner, R. A., . . . Suva, L. J. (2005). Tumor-derived interleukin-8 stimulates osteolysis independent of the receptor activator of nuclear factor-kappaB ligand pathway. Cancer Res, 65(23), 11001-11009. doi: 10.1158/0008-5472.CAN-05-2630
Benfari, R. N. (2015). Management of the patient with chronic pain. Crit Care Nurs Clin North Am, 27(1), 121-129. doi: 10.1016/j.cnc.2014.10.001
Blouin, S., Basle, M. F., & Chappard, D. (2005). Rat models of bone metastases. Clin Exp Metastasis, 22(8), 605-614. doi: 10.1007/s10585-006-9002-5
Chaplan, S. R., Bach, F. W., Pogrel, J. W., Chung, J. M., & Yaksh, T. L. (1994). Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods, 53(1), 55-63.
Choi, Y., Yoon, Y. W., Na, H. S., Kim, S. H., & Chung, J. M. (1994). Behavioral signs of ongoing pain and cold allodynia in a rat model of neuropathic pain. Pain, 59(3), 369-376.
Cohen, S. R., & Melzack, R. (1985). Morphine injected into the habenula and dorsal posteromedial thalamus produces analgesia in the formalin test. Brain Res, 359(1-2), 131-139.
Coleman, R. E. (2006). Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res, 12(20 Pt 2), 6243s-6249s. doi: 10.1158/1078-0432.CCR-06-0931
Currie, G. L., Delaney, A., Bennett, M. I., Dickenson, A. H., Egan, K. J., Vesterinen, H. M., . . . Fallon, M. T. (2013). Animal models of bone cancer pain: systematic review and meta-analyses. Pain, 154(6), 917-926. doi: 10.1016/j.pain.2013.02.033
Dore-Savard, L., Barriere, D. A., Midavaine, E., Belanger, D., Beaudet, N., Tremblay, L., . . . Sarret, P. (2013). Mammary cancer bone metastasis follow-up using multimodal small-animal MR and PET imaging. J Nucl Med, 54(6), 944-952. doi: 10.2967/jnumed.112.114215
Dore-Savard, L., Otis, V., Belleville, K., Lemire, M., Archambault, M., Tremblay, L., . . . Sarret, P. (2010). Behavioral, medical imaging and histopathological features of a new rat model of bone cancer pain. PLoS One, 5(10), e13774. doi: 10.1371/journal.pone.0013774
Gardon, O., Faget, L., Chu Sin Chung, P., Matifas, A., Massotte, D., & Kieffer, B. L. (2014). Expression of mu opioid receptor in dorsal diencephalic conduction system: new insights for the medial habenula. Neuroscience, 277, 595-609. doi: 10.1016/j.neuroscience.2014.07.053
Grant, F. D., Fahey, F. H., Packard, A. B., Davis, R. T., Alavi, A., & Treves, S. T. (2008). Skeletal PET with 18F-fluoride: applying new technology to an old tracer. J Nucl Med, 49(1), 68-78. doi: 10.2967/jnumed.106.037200
Guise, T. A., Mohammad, K. S., Clines, G., Stebbins, E. G., Wong, D. H., Higgins, L. S., . . . Chirgwin, J. M. (2006). Basic mechanisms responsible for osteolytic and osteoblastic bone metastases. Clin Cancer Res, 12(20 Pt 2), 6213s-6216s. doi: 10.1158/1078-0432.CCR-06-1007
Honore, P., Luger, N. M., Sabino, M. A., Schwei, M. J., Rogers, S. D., Mach, D. B., . . . Mantyh, P. W. (2000). Osteoprotegerin blocks bone cancer-induced skeletal destruction, skeletal pain and pain-related neurochemical reorganization of the spinal cord. Nat Med, 6(5), 521-528. doi: 10.1038/74999
Hussein, O., Tiedemann, K., Murshed, M., & Komarova, S. V. (2012). Rapamycin inhibits osteolysis and improves survival in a model of experimental bone metastases. Cancer Lett, 314(2), 176-184. doi: 10.1016/j.canlet.2011.09.026
Kakonen, S. M., Selander, K. S., Chirgwin, J. M., Yin, J. J., Burns, S., Rankin, W. A., . . . Guise, T. A. (2002). Transforming growth factor-beta stimulates parathyroid hormone-related protein and osteolytic metastases via Smad and mitogen-activated protein kinase signaling pathways. J Biol Chem, 277(27), 24571-24578. doi: 10.1074/jbc.M202561200
Kovacevic, N., Henderson, J. T., Chan, E., Lifshitz, N., Bishop, J., Evans, A. C., . . . Chen, X. J. (2005). A three-dimensional MRI atlas of the mouse brain with estimates of the average and variability. Cereb Cortex, 15(5), 639-645. doi: 10.1093/cercor/bhh165
Kramer, H. H., Stenner, C., Seddigh, S., Bauermann, T., Birklein, F., & Maihofner, C. (2008). Illusion of pain: pre-existing knowledge determines brain activation of 'imagined allodynia'. J Pain, 9(6), 543-551. doi: 10.1016/j.jpain.2008.01.340
Mach, D. B., Rogers, S. D., Sabino, M. C., Luger, N. M., Schwei, M. J., Pomonis, J. D., . . . Mantyh, P. W. (2002). Origins of skeletal pain: sensory and sympathetic innervation of the mouse femur. Neuroscience, 113(1), 155-166.
Mantyh, W. G., Jimenez-Andrade, J. M., Stake, J. I., Bloom, A. P., Kaczmarska, M. J., Taylor, R. N., . . . Mantyh, P. W. (2010). Blockade of nerve sprouting and neuroma formation markedly attenuates the development of late stage cancer pain. Neuroscience, 171(2), 588-598. doi: 10.1016/j.neuroscience.2010.08.056
Martin, M., Hurley, R. A., & Taber, K. H. (2007). Is opiate addiction associated with longstanding neurobiological changes? J Neuropsychiatry Clin Neurosci, 19(3), 242-248. doi: 10.1176/appi.neuropsych.19.3.242
McCaffrey, G., Thompson, M. L., Majuta, L., Fealk, M. N., Chartier, S., Longo, G., & Mantyh, P. W. (2014). NGF blockade at early times during bone cancer development attenuates bone destruction and increases limb use. Cancer Res, 74(23), 7014-7023. doi: 10.1158/0008-5472.CAN-14-1220
Mizuma, H., Shukuri, M., Hayashi, T., Watanabe, Y., & Onoe, H. (2010). Establishment of in vivo brain imaging method in conscious mice. J Nucl Med, 51(7), 1068-1075. doi: 10.2967/jnumed.110.075184
Ohtori, S., Inoue, G., Koshi, T., Ito, T., Yamashita, M., Yamauchi, K., . . . Takahashi, K. (2007). Characteristics of sensory dorsal root ganglia neurons innervating the lumbar vertebral body in rats. J Pain, 8(6), 483-488. doi: 10.1016/j.jpain.2007.01.004
Ostrowsky, K., Magnin, M., Ryvlin, P., Isnard, J., Guenot, M., & Mauguiere, F. (2002). Representation of pain and somatic sensation in the human insula: a study of responses to direct electrical cortical stimulation. Cereb Cortex, 12(4), 376-385.
Roodman, G. D. (2004). Mechanisms of bone metastasis. N Engl J Med, 350(16), 1655-1664. doi: 10.1056/NEJMra030831
Rosol, T. J., Tannehill-Gregg, S. H., LeRoy, B. E., Mandl, S., & Contag, C. H. (2003). Animal models of bone metastasis. Cancer, 97(3 Suppl), 748-757. doi: 10.1002/cncr.11150
Schwei, M. J., Honore, P., Rogers, S. D., Salak-Johnson, J. L., Finke, M. P., Ramnaraine, M. L., . . . Mantyh, P. W. (1999). Neurochemical and cellular reorganization of the spinal cord in a murine model of bone cancer pain. J Neurosci, 19(24), 10886-10897.
Struck, A. F., Muzahir, S., & Hall, L. T. (2015). (18)F-FDG PET/CT and pain in metastatic bone cancer. Am J Nucl Med Mol Imaging, 5(3), 287-292.
Thompson, S. J., & Bushnell, M. C. (2012). Rodent functional and anatomical imaging of pain. Neurosci Lett, 520(2), 131-139. doi: 10.1016/j.neulet.2012.03.015
Vadivelu, N., Singh-Gill, H., Kodumudi, G., Kaye, A. J., Urman, R. D., & Kaye, A. D. (2014). Practical guide to the management of acute and chronic pain in the presence of drug tolerance for the healthcare practitioner. Ochsner J, 14(3), 426-433.
van der Horst, G., & van der Pluijm, G. (2012). Preclinical imaging of the cellular and molecular events in the multistep process of bone metastasis. Future Oncol, 8(4), 415-430. doi: 10.2217/fon.12.33
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19879-
dc.description.abstract癌細胞誘發骨疼痛(CIBP)是一種癌症晚期病患常見的慢性疼痛現象,當癌細胞轉移到骨骼後經常引起病患難以承受的疼痛。雖然癌症引發的疼痛是臨床上極大的問題之一,但目前對於CIBP的病理機制還尚未清楚。本研究的目的為結合小鼠正子暨電腦斷層掃描造影(PET/CT)與疼痛行為測試,藉由CIBP小鼠自發性疼痛情況下腦部葡萄糖代謝率變化結果,找出乳癌細胞誘發骨疼痛以及CIBP常用止痛藥,嗎啡止痛作用的相關腦區。我們首先將4T1小鼠乳癌细胞注入至BALB/c小鼠股骨之骨髓腔中,利用18F-NaF-PET掃描造影追蹤癌細胞在骨骼內的發展結果,建立乳癌細胞誘發骨疼痛的小鼠動物模式。之後利用此注射4T1乳癌細胞的 CIBP小鼠動物模式,並以注射磷酸鹽緩衝液(PBS)的小鼠作為sham控制組,於手術前、手術後第7天、第10天以及第14天進行自發性疼痛、機械性觸感痛及冷觸感痛的行為測試,確認動物的疼痛發展狀態,之後於手術第16天測試不同劑量的嗎啡止痛效果。另外,我們利用18F-FDG-PET掃描造影,在手術前、手術後第14天以及手術後第16天給予嗎啡後進行掃描,探討CIBP小鼠自發性疼痛時以及給予嗎啡止痛時的腦部葡萄糖代謝變化。實驗結果顯示,小鼠於注入4T1乳癌細胞14天後會產生顯著性的自發性疼痛、機械性觸感痛及冷觸感痛現象,在給予小鼠15 mg/kg的嗎啡後30至60分鐘,對於自發性疼痛、機械性觸感痛以及冷觸感痛都有顯著的止痛效果。比較小鼠腦部的葡萄糖代謝率變化後發現,動物的活動狀態會影響疼痛相關腦區結果的判讀,小鼠活動時感覺與運動皮質區活性上升,在睡覺時結果相反。將活動參數去除後CIBP的PET分析結果顯示,兩側島腦(insular cortex)與兩側次級體感覺皮質(secondary somatosensory cortex)腦區的葡萄糖代謝活性顯著上升,而嗎啡可能是藉由抑制異側島腦與次級體感覺皮質腦區,以及活化韁核(habenula)與中腦導水管周圍灰質(PAG)腦區產生止痛作用,顯示異側島腦與S2腦區很有可能是參與CIBP小鼠疼痛之重要角色。zh_TW
dc.description.abstractCancer-induced bone pain (CIBP) is a common pain in patients with advanced cancer. When cancer metastasizes to the bone, it can cause persistent and unbearable pain which often cause patient’s physical and mental suffering. Although CIBP is one of the most serious clinical problems, the pathophysiological mechanism of CIBP has not been elucidated. Opioid, such as morphine, is commonly used in cancer pain management. The aim of this study is to combine the positron emission tomography-computed tomography (PET/CT) imaging and pain behavior tests to investigate the pain- and morphine analgesia-related brain regions in the CIBP mice. We injected 4T1 mouse breast cancer cells into left femur bone marrow cavity of the BALB/c mice, using 18F-NaF as tracer to evaluate the development of cancer cells in the bone environment. Mice in sham control group were injected with phosphate buffered saline. Then, we measured pain related behaviors with limb use observation, von Frey filaments test and acetone stimulus on the day before surgery, Day 7, Day 10 and Day 14 after the surgery to confirm pain development. Morphine doses (10, 15, 30 mg/kg, i.p.) were administered on Day 16 after the surgery. In addition, we investigated spontaneous pain and morphine-analgesic effect on CIBP mice brain by 18F-fluorodeoxyglucose (FDG) PET/CT. In the PET imaging study, each mouse was scanned 3 times: before bone surgery, Day 14, after the surgery, and Day 16, 30 min after the 15 mg/kg morphine treatment. Our results showed that the CIBP mice showed significant spontaneous pain, mechanical allodynia and cold allodynia on 14 days after the 4T1 cancer cells injection. Morphine dose 15 mg/kg was sufficient to relieve spontaneous pain, mechanical and cold allodynia of the CIBP mice between 30 to 60 minutes post-treatment. In PET study, brain glucose metabolic activity of sensory and motor cortex in mice increased during movement, and the results were reversed during sleeping. In order to prevent these results interfering the analysis of CIBP-related brain regions, we removed the activity parameters, and the results showed that in the CIBP condition, glucose metabolic activity were significant increased in bilateral insular cortex and bilateral S2. Morphine analgesia effect may be produced by the observed suppressing contralateral insular cortex and contralateral S2 brain regions, as well as activation of the habenula and PAG. Our data suggest that contralateral insular cortex and contralateral S2 may play an important role in the CIBP.en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:24:44Z (GMT). No. of bitstreams: 1
ntu-104-R02b21016-1.pdf: 2317806 bytes, checksum: 5d265abc77823a739cde7078d4e9ce62 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents論文口試委員審定書 i
致謝 ii
中文摘要 iii
Abstract v
簡寫表 vii
第一章 緒論 1
1.痛覺 1
2.轉移性腫瘤細胞所誘發的骨疼痛 2
3.功能性影像技術與癌症病痛 3
4.實驗目的與實驗架構 5
第二章 實驗材料與方法 6
1.實驗動物 6
2.乳癌細胞誘發骨疼痛小鼠動物模式 6
3.非侵入式活體分子影像系統(In Vivo Imaging Systems, IVIS) 6
4.H & E染色組織切片分析 7
5.疼痛行為測試 7
5.1自發性疼痛行為記錄 7
5.2機械性觸感痛行為測試 8
5.3冷觸感痛行為測試 8
6.嗎啡止痛劑量測試 9
7.小鼠腦部磁振造影(Magnetic Resonance Imaging, MRI) 9
8.正子暨電腦斷層掃描造影(PET-CT) 9
9.正子斷層掃描影像分析(PET image analysis) 10
10.ROI(region of interesting)分析 12
第三章 實驗結果 14
1.4T1乳癌細胞誘導骨疼痛小鼠動物模式建立 14
2.4T1乳癌細胞誘導之骨溶解結果 15
3.疼痛行為測試結果 16
3.1自發性疼痛行為結果 16
3.2機械性觸感痛行為結果 16
3.3冷觸感痛行為結果 17
4.嗎啡止痛劑量測試結果 18
5.正子斷層掃描實驗小鼠自發性疼痛現象 19
6.正子斷層掃描影像分析 20
7.ROI數據結果分析 21
第四章 討論 22
參考文獻 29
附錄 36
dc.language.isozh-TW
dc.title癌細胞誘發骨疼痛模式小鼠腦中與鴉片類藥物止痛相關之影像定位研究zh_TW
dc.titleImaging opiate-analgesia related brain regions in a mice cancer-induced bone pain modelen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee孫維仁(Wei-Zen Sun),曾凱元(Kai-Yuan Tzen),鄭仁坤(Jen-Kun Cheng)
dc.subject.keyword癌細胞誘發骨疼痛,嗎啡,島腦,次級體感覺皮質,正子暨電腦斷層掃描造影,zh_TW
dc.subject.keywordcancer-induced bone pain,morphine,insular cortex,secondary sensory cortex,positron emission tomography-computed tomography,en
dc.relation.page58
dc.rights.note未授權
dc.date.accepted2015-08-18
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生命科學系zh_TW
顯示於系所單位:生命科學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
2.26 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved