請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19827完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 顏伯勳 | |
| dc.contributor.author | Chia-Wei Lin | en |
| dc.contributor.author | 林佳煒 | zh_TW |
| dc.date.accessioned | 2021-06-08T02:21:34Z | - |
| dc.date.copyright | 2015-09-25 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-20 | |
| dc.identifier.citation | 1. Eskiw CH, Dellaire G, Mymryk JS, Bazett-Jones DP. Size, position and dynamic behavior of PML nuclear bodies following cell stress as a paradigm for supramolecular trafficking and assembly. Journal of Cell Science 116, 4455-4466 (2003). 2. Bernardi R, Pandolfi PP. Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nature Reviews Molecular Cell Biology 8, 1006-1016 (2007). 3. Ching RW, Dellaire G, Eskiw CH, Bazett-Jones DP. PML bodies: a meeting place for genomic loci?. Journal of Cell Science 118, 847-854 (2005). 4. Lallemand-Breitenbach V, de Th eacute; H. PML nuclear bodies. Cold Spring Harbor Perspectives Biology 2, a000661 (2010). 5. Hofmann TG, Will H. Body language: the function of PML nuclear bodies in apoptosis regulation. Cell Death and Differentiation 10, 1290-1299 (2003). 6. Gottifredi V, Prives C. P53 and PML: new partners in tumor suppression. Trends in Cell Biology 11, 184-187 (2001). 7. Gurrieri C, Capodieci P, Bernardi R, Scaglioni PP, Nafa K, Rush LJ, Verbel DA, Cordon-Cardo C, Pandolfi PP. Loss of the tumor suppressor PML in human cancers of multiple histologic origins. Journal of the National Cancer Institute 96, 269-279 (2004). 8. Salomoni P, Dvorkina M, Michod D. Role of the promyelocytic leukaemia protein in cell death regulation. Cell Death and Disease 3, e247 (2012). 9. Salomoni P, Pandolfi PP. The role of PML in tumor suppression. Cell 108, 165-170 (2002). 10. Bernardi R, Pandolfi PP. Role of PML and the PML-nuclear body in the control of programmed cell death. Oncogene 22, 9048-9057 (2003). 11. Bernardi R, Papa A, Pandolfi PP. Regulation of apoptosis by PML and the PML-NBs. Oncogene 27, 6299-6312 (2008). 12. Takahashi Y, Lallemand-Breitenbach V, Zhu J, de Th eacute; H. PML nuclear bodies and apoptosis. Oncogene 23, 2819-2824 (2004). 13. Dellaire G, Bazett-Jones DP. PML nuclear bodies: dynamic sensors of DNA damage and cellular stress. Bioessays 26, 963-977 (2004). 14. Sahin U, Ferhi O, Jeanne M, Benhenda S, Berthier C, Jollivet F, Niwa-Kawakita M, Faklaris O, Setterblad N, de Th eacute; H, Lallemand-Breitenbach V. Oxidative stress-induced assembly of PML nuclear bodies controls sumoylation of partner proteins. Journal of Cell Biology 204, 931-945 (2014). 15. Bloch DB, Nakajima A, Gulick T, Chiche JD, Orth D, de La Monte SM, Bloch KD. Sp110 localizes to the PML-Sp100 nuclear body and may function as a nuclear hormone receptor transcriptional coactivator. Molecular and Cellular Biology 20, 6138-6146 (2000). 16. Watashi K, Hijikata M, Tagawa A, Doi T, Marusawa H, Shimotohno K. Modulation of retinoid signaling by a cytoplasmic viral protein via sequestration of Sp110b, a potent transcriptional corepressor of retinoic acid receptor, from the nucleus. Molecular and Cellular Biology 23, 7498-7509 (2003). 17. Nicewonger J, Suck G, Bloch D, Swaminathan S. Epstein-Barr virus (EBV) SM protein induces and recruits cellular Sp110b to stabilize mRNAs and enhance EBV lytic gene expression. Journal of Virology 78, 9412-9422 (2004). 18. Bottomley MJ, Collard MW, Huggenvik JI, Liu Z, Gibson TJ, Sattler M. The SAND domain structure defines a novel DNA-binding fold in transcriptional regulation. Nature Structural Biology 8, 626-633 (2001). 19. Cai L, Wang Y, Wang JF, Chou KC. Identification of proteins interacting with human SP110 during the process of viral infections. Medicinal Chemistry 7, 121-126 (2011). 20. Pan H, Yan BS, Rojas M, Shebzukhov YV, Zhou H, Kobzik L, Higgins DE, Daly MJ, Bloom BR, Kramnik I. Ipr1 gene mediates innate immunity to tuberculosis. Nature 434, 767-772 (2005). 21. Cliffe ST, Bloch DB, Suryani S, Kamsteeg EJ, Avery DT, Palendira U, Church JA, Wainstein BK, Trizzino A, Lefranc G, Akatcherian C, Megarban eacute; A, Gilissen C, Moshous D, Reichenbach J, Misbah S, Salzer U, Abinun M, Ong PY, Stepensky P, Ruga E, Ziegler JB, Wong M, Tangye SG, Lindeman R, Buckley MF, Roscioli T. Clinical, molecular, and cellular immunologic findings in patients with SP110-associated veno-occlusive disease with immunodeficiency syndrome. Journal of Allergy and Clinical Immunology 130, 735-742 (2012). 22. Rossi D, Zlotnik A. The biology of chemokines and their receptors. Annual Review of Immunology 18, 217-242 (2000). 23. Esche C, Stellato C, Beck LA. Chemokines: key players in innate and adaptive immunity. Journal of Investigative Dermatology 125, 615-628 (2005). 24. Griffith JW, Sokol CL, Luster AD. Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annual Review of Immunology 32, 659-702 (2014). 25. Sokol CL, Luster AD. The chemokine system in innate immunity. Cold Spring Harbor Perspectives Biology 7, a016303 (2015). 26. Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity 12, 121-127 (2000). 27. Charo IF, Ransohoff RM. The many roles of chemokines and chemokine receptors in inflammation. The New England Journal of Medicine 354, 610-621 (2006). 28. Viola A, Luster AD. Chemokines and their receptors: drug targets in immunity and inflammation. Annual Review of Pharmacology and Toxicology 48, 171-197 (2008). 29. Ransohoff RM. Chemokines and chemokine receptors: standing at the crossroads of immunobiology and neurobiology. Immunity 31, 711-721 (2009). 30. Comerford I, McColl SR. Mini-review series: focus on chemokines. Immunology and Cell Biology 89, 183-184 (2011). 31. Matsushima K, Terashima Y, Toda E, Shand F, Ueha S. Chemokines in inflammatory and immune diseases. Inflammation and Regeneration 31, 11-22 (2011). 32. Soria G, Ofri-Shahak M, Haas I, Yaal-Hahoshen N, Leider-Trejo L, Leibovich-Rivkin T, Weitzenfeld P, Meshel T, Shabtai E, Gutman M, Ben-Baruch A. Inflammatory mediators in breast cancer: Coordinated expression of TNFα IL-1β with CCL2 CCL5 and effects on epithelial-to-mesenchymal transition. BMC Cancer 11, 130-150 (2011). 33. Balkwill F. Cancer and the chemokine network. Nature Review Cancer 4, 540-550 (2004). 34. Bendall L. Chemokines and their receptors in disease. Histology and Histopathology 20, 907-926 (2005). 35. Lee AH, Hong JH, Seo YS. Tumour necrosis factor-alpha and interferon-gamma synergistically activate the RANTES promoter through nuclear factor kappaB and interferon regulatory factor 1 (IRF-1) transcription factors. Biochemical Journal 350, 131-138 (2000). 36. Liu J, Guan X, Ma X. Interferon regulatory factor 1 is an essential and direct transcriptional activator for interferon {gamma}-induced RANTES/CCl5 expression in macrophages. Journal of Biological Chemistry 280, 24347-24355 (2005). 37. Fessele S, Boehlk S, Mojaat A, Miyamoto NG, Werner T, Nelson EL, Schlondorff D, Nelson PJ. Molecular and in silico characterization of a promoter module and C/EBP element that mediate LPS-induced RANTES/CCL5 expression in monocytic cells. FASEB Journal 15, 577-590 (2001). 38. Nikolcheva T, Pyronnet S, Chou SY, Sonenberg N, Song A, Clayberger C, Krensky AM. A translational rheostat for RFLAT-1 regulates RANTES expression in T lymphocytes. Journal of Clinical Investigation 110, 119-126 (2002). 39. Ahn YT, Huang B, McPherson L, Clayberger C, Krensky AM. Dynamic interplay of transcriptional machinery and chromatin regulates “late” expression of the chemokine RANTES in T lymphocytes. Molecular and Cellular Biology 27, 253-266 (2007). 40. Krensky AM, Ahn YT. Mechanisms of disease: regulation of RANTES (CCL5) in renal disease. Nature Clinical Practice Nephrology 3, 164-170 (2007). 41. Huang B, Ahn YT, McPherson L, Clayberger C, Krensky AM. Interaction of PRP4 with Kruppel-like factor 13 regulates CCL5 transcription. Journal of Immunology 178, 7081-7087 (2007). 42. Kumar D, Hosse J, von Toerne C, Noessner E, Nelson PJ. JNK MAPK pathway regulates constitutive transcription of CCL5 by human NK cells through SP1. Journal of Immunology 182, 1011-1020 (2009). 43. G eacute;nin P, Algart eacute; M, Roof P, Lin R, Hiscott J. Regulation of RANTES chemokine gene expression requires cooperativity between NF-kappa B and IFN-regulatory factor transcription factors. Journal of Immunology 164, 5352-5361 (2000). 44. Konno S, Grindle KA, Lee WM, Schroth MK, Mosser AG, Brockman-Schneider RA, Busse WW, Gern JE. Interferon-gamma enhances rhinovirus-induced RANTES secretion by airway epithelial cells. American Journal of Respiratory Cell and Molecular Biology 26, 594-601 (2002). 45. Veckman V, Osterlund P, Fagerlund R, Mel eacute;n K, Matikainen S, Julkunen I. TNF-alpha and IFN-alpha enhance influenza-A-virus-induced chemokine gene expression in human A549 lung epithelial cells. Virology 345, 96-104 (2006). 46. Homma T, Matsukura S, Hirose T, Ohnishi T, Kimura T, Kurokawa M, Ieki K, Odaka M, Suzuki S, Watanabe S, Sato M, Kawaguchi M, Schleimer RP, Adachi M. Cooperative activation of CCL5 expression by TLR3 and tumor necrosis factor-alpha or interferon-gamma through nuclear factor-kappaB or STAT-1 in airway epithelial cells. International Archives of Allergy and Immunology 152, 9-17 (2010). 47. Chvatchko Y, Proudfoot AE, Buser R, Juillard P, Alouani S, Kosco-Vilbois M, Coyle AJ, Nibbs RJ, Graham G, Offord RE, Wells TN. Inhibition of airway inflammation by amino-terminally modified RANTES/CC chemokine ligand 5 analogues is not mediated through CCR3. Journal of Immunology 171, 5498-5506 (2003). 48. Lederman MM, Veazey RS, Offord R, Mosier DE, Dufour J, Mefford M, Piatak M Jr, Lifson JD, Salkowitz JR, Rodriguez B, Blauvelt A, Hartley O. Prevention of vaginal SHIV transmission in rhesus macaques through inhibition of CCR5. Science 306, 485-487 (2004). 49. Niwa Y, Akamatsu H, Niwa H, Sumi H, Ozaki Y, Abe A. Correlation of tissue and plasma RANTES levels with disease course in patients with breast or cervical cancer. Clinical Cancer Research 7, 285-289 (2001). 50. Azenshtein E, Luboshits G, Shina S, Neumark E, Shahbazian D, Weil M, Wigler N, Keydar I, Ben-Baruch A. The CC chemokine RANTES in breast carcinoma progression: regulation of expression and potential mechanisms of promalignant activity. Cancer Research 62, 1093-1102 (2002). 51. Yaal-Hahoshen N, Shina S, Leider-Trejo L, Barnea I, Shabtai EL, Azenshtein E, Greenberg I, Keydar I, Ben-Baruch A. The chemokine CCL5 as a potential prognostic factor predicting disease progression in stage II breast cancer patients. Clinical Cancer Research 12, 4474-4480 (2006). 52. Borczuk AC, Papanikolaou N, Toonkel RL, Sole M, Gorenstein LA, Ginsburg ME, Sonett JR, Friedman RA, Powell CA. Lung adenocarcinoma invasion in TGFbetaRII-deficient cells is mediated by CCL5/RANTES. Oncogene 27, 557-564 (2008). 53. Huang CY, Fong YC, Lee CY, Chen MY, Tsai HC, Hsu HC, Tang CH. CCL5 increases lung cancer migration via PI3K, Akt and NF-kappaB pathways. Biochemical Pharmacology 77, 794-803 (2009). 54. L auml;ubli H, Spanaus KS, Borsig L. Selectin-mediated activation of endothelial cells induces expression of CCL5 and promotes metastasis through recruitment of monocytes. Blood 114, 4583-4591 (2009). 55. Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte chemoattractant protein-1 (MCP-1): an overview. Journal of Interferon Cytokine Research 29, 313-326 (2009). 56. Bonello GB, Pham MH, Begum K, Sigala J, Sataranatarajan K, Mummidi S. An evolutionarily conserved TNF-alpha-responsive enhancer in the far upstream region of human CCL2 locus influences its gene expression. Journal of Immunology 186, 7025-7038 (2011). 57. Deng X, Xu M, Yuan C, Yin L, Chen X, Zhou X, Li G, Fu Y, Feghali-Bostwick CA, Pang L. Transcriptional regulation of increased CCL2 expression in pulmonary fibrosis involves nuclear factor-κB and activator protein-1. International Journal of Biochemistry Cell Biology 45, 1366-1376 (2013). 58. Wolter S, Doerrie A, Weber A, Schneider H, Hoffmann E, von der Ohe J, Bakiri L, Wagner EF, Resch K, Kracht M. c-Jun controls histone modifications, NF-kappaB recruitment, and RNA polymerase II function to activate the ccl2 gene. Molecular and Cellular Biology 28, 4407-4423 (2008). 59. Park IW, Wang JF, Groopman JE. HIV-1 Tat promotes monocyte chemoattractant protein-1 secretion followed by transmigration of monocytes. Blood 97, 352-358 (2001). 60. Abraham S, Sawaya BE, Safak M, Batuman O, Khalili K, Amini S. Regulation of MCP-1 gene transcription by Smads and HIV-1 Tat in human glial cells. Virology 309, 196-202 (2003). 61. Abraham S, Sweet T, Sawaya BE, Rappaport J, Khalili K, Amini S. Cooperative interaction of C/EBP beta and Tat modulates MCP-1 gene transcription in astrocytes. Journal of Neuroimmunology 160, 219-227 (2005). 62. Eldeen MB, Deshmane SL, Simbiri K, Khalili K, Amini S, Sawaya BE. MH2 domain of Smad3 reduces HIV-1 Tat-induction of cytokine secretion. Journal of Neuroimmunology 176, 174-180 (2006). 63. Conti I, Rollins BJ. CCL2 (monocyte chemoattractant protein-1) and cancer. Seminars in Cancer Biology 14, 149-154 (2004). 64. Sica A, Saccani A, Bottazzi B, Bernasconi S, Allavena P, Gaetano B, Fei F, LaRosa G, Scotton C, Balkwill F, Mantovani A. Defective expression of the monocyte chemotactic protein-1 receptor CCR2 in macrophages associated with human ovarian carcinoma. Journal of Immunology 164, 733-738 (2000). 65. Monti P, Leone BE, Marchesi F, Balzano G, Zerbi A, Scaltrini F, Pasquali C, Calori G, Pessi F, Sperti C, Di Carlo V, Allavena P, Piemonti L. The CC chemokine MCP-1/CCL2 in pancreatic cancer progression: regulation of expression and potential mechanisms of antimalignant activity. Cancer Research 63, 7451-7461 (2003). 66. Ueno T, Toi M, Saji H, Muta M, Bando H, Kuroi K, Koike M, Inadera H, Matsushima K. Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clinical Cancer Research 6, 3282-3289 (2000). 67. Saji H, Koike M, Yamori T, Saji S, Seiki M, Matsushima K, Toi M. Significant correlation of monocyte chemoattractant protein-1 expression with neovascularization and progression of breast carcinoma. Cancer 92, 1085-1091 (2001). 68. Ohta M, Kitadai Y, Tanaka S, Yoshihara M, Yasui W, Mukaida N, Haruma K, Chayama K. Monocyte chemoattractant protein-1 expression correlates with macrophage infiltration and tumor vascularity in human esophageal squamous cell carcinomas. International Journal of Cancer 102, 220-224 (2002). 69. Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, Kaiser EA, Snyder LA, Pollard JW. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475, 222-225 (2011). 70. Low-Marchelli JM, Ardi VC, Vizcarra EA, van Rooijen N, Quigley JP, Yang J. Twist1 induces CCL2 and recruits macrophages to promote angiogenesis. Cancer Research 73, 662-671 (2013). 71. Elmore S. Apoptosis: a review of programmed cell death. Toxicologic Pathology 35, 495-516 (2007). 72. Chung YW, Jeong DW, Won JY, Choi EJ, Choi YH, Kim IY. H(2)O(2)-induced AP-1 activation and its effect on p21(WAF1/CIP1)-mediated G2/M arrest in a p53-deficient human lung cancer cell. Biochemical and Biophysical Research Communications 293, 1248-1253 (2002). 73. Sun W, Yang J. Functional mechanisms for human tumor suppressors. Journal of Cancer 1, 136-140 (2010). 74. Tait SW, Green DR. Caspase-independent cell death: leaving the set without the final cut. Oncogene 27, 6452-6461 (2008). 75. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B 3rd, Stockwell BR. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060-1072 (2012). 76. Hayden MS, Ghosh S. Signaling to NF-kappaB. Genes Development 18, 2195-2224 (2004). 77. Gilmore TD. Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 25, 6680-6684 (2006). 78. Oeckinghaus A, Ghosh S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harbor Perspectives Biology 1, a000034 (2009). 79. Ben-Neriah Y, Karin M. Inflammation meets cancer, with NF-κB as the matchmaker. Nature immunology 12, 715-723 (2011). 80. Zeng L, Zhou MM. Bromodomain: an acetyl-lysine binding domain. FEBS Letters 513, 124-128 (2002). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19827 | - |
| dc.description.abstract | 前骨髓性細胞白血病細胞核體 (Promyelocytic leukemia nuclear body; 簡稱PML-NB) 是位於細胞核中的特殊構造,其中會聚集許多種類的蛋白,並參與基因轉錄、細胞凋亡、腫瘤抑制及對抗病毒的相關機制。SP110 核蛋白為 PML-NB 的其中一個成員,而 SP110b 則為 SP110 蛋白的一個主要異構體。本論文研究發現 SP110b 的過量表現會顯著地抑制 H1299 肺癌細胞的生長和群落生成,在臨床分析也指出 SP110b 的高度表現會與肺癌病人的存活率呈正相關。另一方面,我們也觀察到當細胞遭受氧化壓力時,SP110b 的表現會促使細胞停留於細胞週期的 G0/G1 期,並在調控細胞週期的進程上扮演重要角色。在 SP110b 所參與的基因調控上,我們發現趨化因子 CCL5 的基因轉錄會被轉錄因子 NF-κB 所活化,而 SP110b 會相對地抑制這樣的活化作用。除此之外,在 SP110b 過量表現下,γ干擾素刺激所導致的單核球移行 (monocyte migration) 也會被明顯地抑制下來。總結以上的結果,本研究發現核蛋白 SP110b 具有許多不同的細胞功能,例如調控趨化因子的基因表現,進而影響單核球或其他免疫細胞在γ干擾素刺激下的移行能力。另外,SP110b 也是一個有潛力的肺癌腫瘤抑制因子,並且可能與良好的預後相關。 | zh_TW |
| dc.description.abstract | Promyelocytic leukemia nuclear body (PML-NB) is a discrete nuclear compartment that consists of various proteins involving in regulation of gene transcription, apoptosis, tumor suppression and antiviral response. SP110 nuclear protein is a PML-NB component, and SP110b is a major isoform of SP110. Here we demonstrated that SP110b significantly suppressed the growth and colony formation of H1299 cells and, in clinical, its expression is positively associated with a better survival of lung cancer patients. In addition, we also found that SP110b was critical for the alteration of cell cycle progression in response to oxidative stress via accumulation of cells in G0/G1 phase. In terms of the roles of SP110b in gene regulation, we demonstrated that nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)-induced transcription of C-C motif ligand 5 (CCL5) chemokine was remarkably down-regulated by SP110b. Moreover, the extent of monocyte migration that is activated by interferon gamma (IFN-γ) treatment was impaired in the presence of SP110b over-expression. In sum, our findings suggest that SP110b nuclear protein has multiple cellular functions, such as regulating gene transcription of chemokines, thereby affecting migration of immune cells upon IFN-γ stimulation. Besides, SP110b also serves as a potential tumor suppressor of lung cancer that correlated with good prognosis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T02:21:34Z (GMT). No. of bitstreams: 1 ntu-104-R02442012-1.pdf: 2338222 bytes, checksum: 2669659d5c82f2d10e8950f150cd6311 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 摘要……………………………………………………………………………………....i Abstract……………………………………………………………………………….....ii Contents………………………………………………………………………………..iii Figure contents…………………………………………………………………..………v Table contents…………………………………………………………………………...vi Chapter 1 Introduction………………………………………………………………...…1 1.1 PML nuclear body………………..……………………………………………….1 1.1.1 Tumor suppression……………………………………………………...…….3 1.1.2 Senescence……………………………………………………………………4 1.1.3 Apoptosis………………………………………………………………….….5 1.1.4 Stress response………………………………………………………………..8 1.2 SP110 isoform b (SP110b)………………………………..……………………...10 1.3 Chemokines………………………………………………………………….…..12 1.3.1 Chemokine (C-C motif) ligand 5 (CCL5)…………………………………..15 1.3.2 Chemokine (C-C motif) ligand 2 (CCL2)…………………………………..19 Chapter 2 Material and methods………………………………………….……...……..22 2.1 Cell culture………………………………………………………………………22 2.2 Lentivirus production………………………………………………………........23 2.3 Lentivirus transduction…………………………………………………………..24 2.4 Cell counting……………………………………………………………………..24 2.5 Cell growth and cell viability…………………………………………….….......24 2.6 Colony formation assay………………………………………………………….25 2.7 Flow cytometry analysis of apoptosis……………………………………….......26 2.8 Flow cytometry analysis of cell cycle…………………………………………...26 2.9 Wound healing assay…………………………………………………………….27 2.10 RNA extraction and reverse transcription-polymerase chain reaction (PCR)….27 2.11 Plasmid, transfection, luciferase reporter assay………………………..……….28 2.12 Protein extraction and western blot…..………………………………………...29 2.13 Migration assay…………………………………………………………………30 2.14 Statistical analysis………………………………………………………………31 Chapter 3 Results…………………………………………………..……………..…….32 3.1 The roles of SP110b in tumor suppression………………………………………32 3.2 The roles of SP110b in gene regulation………………………………………….36 Chapter 4 Discussion...……………………...……………………………..……..…….41 Chapter 5 Figures………………………………………………………………....…….45 Chapter 6 Tables………………………………………………………………....…......64 Chapter 7 References………………………………………………………..….…....…65 | |
| dc.language.iso | en | |
| dc.title | SP110b在抑制癌症及基因調控上的角色 | zh_TW |
| dc.title | The roles of SP110b in tumor suppression and gene regulation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林敬哲,歐展言 | |
| dc.subject.keyword | SP110b,腫瘤抑制,CCL5,NF-κB,單核球移行, | zh_TW |
| dc.subject.keyword | SP110b,tumor suppression,CCL5,NF-κB,monocyte migration, | en |
| dc.relation.page | 77 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2015-08-20 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 2.28 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
