Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19803
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃慶怡(Ching-I Huang)
dc.contributor.authorWei-Ting Leeen
dc.contributor.author李威霆zh_TW
dc.date.accessioned2021-06-08T02:20:07Z-
dc.date.copyright2015-08-26
dc.date.issued2015
dc.date.submitted2015-08-20
dc.identifier.citation[1] 王宗櫚、陳嬿羽、張弘達。科學發展。2013,483,62–68。
[2] Y. W. Su, S. C. Lan and K. H. Wei. Materialstoday. 2012, 15, 554–562.
[3] I. Etxebarria, J. Ajuria and R. Pacios. J. Photon. Energy. 2015, 5, 057214.
[4] H. X. Zhou, L. Q. Yang and W. You. Macromolecules. 2012, 45, 607−632.
[5] M.C. Scharber and N.S. Sariciftci. Progress in Polymer Science. 2013, 38, 1929–
1940.
[6] M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger and
C. J. Brabec. Adv. Mater. 2006, 18(6), 789−794.
[7] Y. J. Cheng, S. H. Yang and C. S. Hsu. Chem. Rev. 2009, 109, 5868–5923.
[8] M. Svensson. Synth. Met. 2003, 135−136, 137−138.
[9] S. L.C. Hsu, Y. C. Lin, R. F. Lee, C. Sivakumar, J. S. Chen and W.Y. J. Chou.
Polym. Sci., Part A: Polym. Chem. 2009, 47 (20), 5336−5343.
[10] M. Kreyenschmidt, G. Klaerner, T. Fuhrer, J. Ashenhurst, S. Karg, W. D. Chen,
V.Y. Lee, J. C. Scott and R. D. Miller. Macromolecules. 1998, 31 (4), 1099−1103.
[11] T. Yohannes, F. Zhang, M. Svensson, J. C. Hummelen, M. R. Andersson and O.
Inganäs. Thin Solid Films. 2004, 449 (1−2), 152−157.
[12] O. InganÄs, F. Zhang and M. R. Andersson. Acc. Chem. Res. 2009, 42 (11),
1731−1739.
[13] H. Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu and G.
Li. Nature Photonics. 2009, 3 (11), 649−653.
[14] R. Yang, R. Tian, J. Yan, Y. Zhang, J. Yang, Q. Hou, W. Yang, C. Zhang and Y.
Cao. Macromolecule. 2005, 38 (2), 244−253.
[15] S. Janietz, H. Krueger, H. F. Schleiermacher, U. Würfel and M. Niggemann.
Macromol. Chem. Phys. 2009, 210 (18), 1493−1503.
[16] W. Li, R. Qin, Y. Zhou, M. Andersson, F. Li, C. Zhang, B. Li, Z. Liu, Z. Bo and F.
Zhang. Polymer. 2010, 51 (14), 3031−3038.
[17] E. Zhou, J. Cong, S. Yamakawa, Q. Wei, M. Nakamura, K. Tajima, C. Yang and
K. Hashimoto. Macromolecules. 2010, 43 (6), 2873−2879.
[18] M. Svensson, F. Zhang, S. C. Veenstra, W. J. H. Verhees, J. C. Hummelen, J. M.
Kroon, O. Inganäs and M. R. Andersson. Adv. Mater. 2003, 15 (12), 988−991.
[19] D. Mühlbacher, M. Scharber, M. Morana, Z. Zhu, D. Waller, R. Gaudiana and C.
Brabec. Adv. Mater. 2006, 18 (21), 2884−2889.
[20] A. J. Moulé, A. Tsami, T. W. Bünnagel, M. Forster, N. M. Kronenberg, M.
Scharber, M. Koppe, M. Morana, C. J. Brabec, K. Meerholz and U. Scherf. Chem.
Mater. 2008, 20 (12), 4045−4050.
[21] J. C. Bijleveld, M. Shahid, J. Gilot, M. M. Wienk and R. A. J. Janssen. Adv. Funct.
Mater. 2009, 19 (20), 3262−3270.
[22] R. C. Coffin, J. Peet, J. Rogers and G. C. Bazan. Nature Chem. 2009, 1 (8),
57−661.
[23] J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger and G. C.
Bazan. Nature Mater. 2007, 6 (7), 497−500.
[24] H. Zhou, L. Yang, A. C. Stuart, S. C. Price, S. Liu and W. You. Angew. Chem., Int.
Ed. 2011, 50 (13), 2995−2998.
[25] J. Hou, H. Y. Chen, S. Zhang, G. Li and Y. Yang. J. Am. Chem. Soc. 2008, 130
(48), 16144−16145.
[26] J. C. Bijleveld, A. P. Zoombelt, S. G. J. Mathijssen, M. M. Wienk, M. Turbiez, D.
M. de Leeuw and R. A. J. Janssen. J. Am. Chem. Soc. 2009, 131 (46),
16616−16617.
[27] A. P. Zoombelt, S. G. J. Mathijssen, M. G. R. Turbiez, M. M. Wienk and R. A. J.
Janssen. J. Mater. Chem. 2010, 20 (11), 2240−2246.
[28] E. Zhou, S. Yamakawa, K. Tajima, C. Yang and K. Hashimoto. Chem. Mater.
2009, 21 (17), 4055−4061.
[29] J. C. Bijleveld, V. S. Gevaerts, D. D. Nuzzo, M. Turbiez, S. G. J. Mathijssen, D.
M. de Leeuw, M. M. Wienk and R. A. J. Janssen. Adv. Mater. 2010, 22 (35),
E242−E246.
[30] M. M. Wienk, M. Turbiez, J. Gilot and R. A. J. Janssen. Adv. Mater. 2008, 20 (13),
2556−2560.
[31] Y. Zou, D. Gendron, R. d. Badrou-Aïch, A. Najari, Y. Tao and M. Leclerc.
Macromolecules. 2009, 42 (8), 2891−2894.
[32] L. Huo, J. Hou, H. Y. Chen, S. Zhang, Y. Jiang, T. L. Chen and Y. Yang.
Macromolecules. 2009, 42 (17), 6564−6571.
[33] C. H. Woo, P. M. Beaujuge, T. W. Holcombe, O. P. Lee and J. M. J. Frechet. J.
Am. Chem. Soc. 2010, 132 (44), 15547−15549.
[34] H. Bronstein, Z. Chen, R. S. Ashraf, W. Zhang, J. Du, J. R. Durrant, T. P. Shakya,
K. Song, S. E. Watkins, Y. Geerts, M. M. Wienk, R. A. J. Janssen, T. Anthopoulos,
H. Sirringhaus, M. Heeney and I. McCulloch. J. Am. Chem. Soc. 2011, 133 (10),
3272−3275.
[35] Y. Zou, A. Najari, P. Berrouard, S. Beaupre, A. B. Reda, Y. Tao and M. Leclerc. J.
Am. Chem. Soc. 2010, 132 (15), 5330−5331.
[36] C. M. Amb, S. Chen, K. R. Graham, J. Subbiah, C. E. Small, F. So and J. R.
Reynolds. J. Am. Chem. Soc. 2011, 133 (26), 10062−10065.
[37] J. Roncali. Macromol. Rapid Commun. 2007, 28, 1761–1775.
[38] C. Shi, Y. Yao, Y. Yang and Q. Pei. J. Am. Chem. Soc. 2006, 128, 8980-8986
[39] H. A. Ho, H. Brisset, E. H. Elandaloussi, P. Frkre and J. Roncali. Adv. Maw. 1996,
8(12), 990–994
[40] S. P. Rittmeyer and A. Groß. Beilstein J. Nanotechnol. 2012, 3, 909–919.
[41] J. Ma, S. H. Li and Y. S. Jiang. Macromolecules. 2002, 35, 1109-1115.
[42] H. A. Aouchiche, S. Djennane and A. Boucekkine. Synthetic Metals. 2004, 140,
127–133.
[43] S. S. Zade and M. Bendikov. Organic Letters. 2006, 8(23), 5243-5246.
[44] Y. C. Hung, J. C. Jiang, C. Y. Chao, W. F. Su and S. T. Lin. J. Phys. Chem. B.
2009, 113, 8268–8277.
[45] L. Pandey, C. Risko, J. E. Norton and J. L. Brédas. Macromolecules. 2012, 45,
6405−6414.
[46] T.J. Lin and S. T. Lin. Phys.Chem.Chem.Phys. 2015, 17, 4127.
[47] V. Fock. Zeit. F. Physik. 1930, 61, 126−148.
[48] L. H. Thomas. Proc. Cambridge Phil. Soc. 1927, 23(5), 542–548.
[49] E. Fermi. Rend. Accad. Naz. Lincei. 1927, 6, 602–607.
[50] P. Hohenberg and W. Kohn. Phys. Rev. B. 1964, 136, 864−871.
[51] W. Kohn and L. J. Sham. Physical Review. 1965, 140(4A), A1133–A1138.
[52] I. N. Levine. Quantum Chemistry. 2006.
[53] R. G. Parr and W. Yang. Density-Functional Theory of Atoms and Molecules.
1989.
[54] A. D. Becke. Phys. Rev. A. 1988, 38, 3098.
[55] P. J. Stephens, F. J. Devlin, C.F. Chablowski and M. J. Frisch. J. Phys. Chem.
1994, 98, 11623.
[56] L. J. Huo, J. H. Hou, H. Y. Chen, S. Q. Zhang, Y. Jiang, T. L. Chen and Y. Yang.
Macromolecules. 2009, 42, 6564–6571.
[57] G. Y. Chen, C. M. Chiang, D. Kekuda, S. C. Lan, C. W. Chu and K. H. Wei.
Journal of Polymer Science: Part A: Polymer Chemistry. 2010, 48, 1669–1675.
[58] X. G. Guo, H. Xin, F. S. J. Kim, A. D. T. Liyanage, S. A. Jenekhe and M. D.
Watson. Macromolecules 2011, 44, 269–277.
[59] C. Piliego, T. W. Holcombe, J. D. Douglas, C. H. Woo, P. M. Beaujuge and J. M.
J. Fre´chet. J. Am. Chem. Soc. 2010, 132, 7595–7597
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19803-
dc.description.abstract電子予體─電子受體共軛高分子為近年來被廣泛研究的高分子太陽能電池材
料。如何藉由共軛高分子的結構設計來提升光電轉換效率是最重要的議題。共軛
高分子的能階、能隙是影響光電轉換效率的重大因素。因此在本研究中,我們利
用量子力學中的密度泛函理論研究電子予體─電子受體共軛高分子的光電性質。
我們選擇三種電子予體單體fluorene、CPT、BnDT 和三種電子受體單體BT、
DPP、TPD。我們計算這些交替共聚合物的HOMO 能階、LUMO 能階與能隙。
因為BnDT-DPP 的能階與能隙最接近理想值,所以BnDT-DPP 有最大的光電轉換
效率。在共軛高分子中,取代基也是影響能階與能隙的重要因素。我們在聚噻吩
接上推電子基和拉電子基形成交替共聚合物。推電子基包含羥基、胺基和甲氧
基。拉電子基包含氰基、醛基、羧基和硝基。我們發現羥基、甲氧基、氰基和醛
基使分子鏈構形較為共平面,因此OH-CN、OH-CHO、OCH3-CN 和OCH3-CHO
的組合有較低的能隙。最後我們探討取代基的數量和排列方式對共軛高分子的影
響。推電子基與拉電子基的組合會比只有推電子基或只有拉電子基更好。AT-NT
有最低的能隙。
zh_TW
dc.description.abstractDonor-acceptor conjugated polymers are polymer solar cells materials which are
widely researched in recent years. How to promote the power conversion efficiency by
structure design of conjugated polymers is the most important issue. Energy level and
band gap of the conjugated polymers are major factors which affect the power
conversion efficiency. Thus, in this study, we use density functional theory of the
quantum mechanics to investigate the photoelectric properties of the donor-acceptor
conjugated polymers. We choose three donor units, fluorine, CPT, BnDT and three
acceptor units, BT, DPP, TPD.We Calculate the HOMO, LUMO and band gap of these
alternating copolymers. Because the energy level and band gap of BnDT-DPP are the
closest to ideal value, BnDT-DPP has maximum power conversion efficiency. In
conjugated polymers, substituents are also important factors which affect the energy
level and the band gap. We join electron-donating groups and electron-withdrawing
groups to polythiophenes, becoming alternating copolymers. Electron-donating groups
include hydroxy, amino and methoxy groups. Electron-withdrawing groups include
cyano, formyl, carboxyl and nitro groups. We find hydroxy, methoxy, carboxyl and
formyl make the chain conformation coplanar, so the combination of OH-CN, OHCHO,
OCH3-CN and OCH3-CHO have lower band gap. Last, we investigate the effects
of amount and rearrangement of substituents on conjugated polymers. The combination
of electron-donating groups and electron-withdrawing groups is better than only
electron-donating groups or only electron-withdrawing groups. AT-NT has the lowest
band gap.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:20:07Z (GMT). No. of bitstreams: 1
ntu-104-R02549021-1.pdf: 2720788 bytes, checksum: 3b277261e7a51b1e45666727a3d9a17c (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員會審定書………………………………………………………………………i
誌謝……………………………………………………………………………………...ii
摘要……………………………………………………………………………………..iv
ABSTRACT……………………………………………………………………………..v
目錄……………………………………………………………………………………..vi
圖目錄………………………………………………………………………………….vii
表目錄…………………………………………………………………………….……..x
第一章 前言…………………………………………………………………………….1
第二章 模擬方法……………………………………………………………………...11
2.1 密度泛函理論………………………………………………………………11
2.2 模擬計算流程………………………………………………………………..15
第三章 結果與討論…………………………………………………………………...19
3.1 探討取代基對聚噻吩之能階的影響………………………………………..20
3.2 探討聚噻吩接上推、拉電子基之能隙………………………………………26
3.3 探討取代基的數量與排列方式對聚噻吩的影響…………………………..30
3.3.1 純推電子基的數量與排列對聚噻吩之能階、能隙的影響…………...32
3.3.2 純拉電子基的數量與排列對聚噻吩之能階、能隙的影響…………...33
3.3.3 推、拉電子基的數量與排列對聚噻吩之能階、能隙的影響………….34
3.4 探討電子予體─電子受體共軛高分子的能階、能隙……………………..37
第四章 結論…………………………………………………………………………...43
參考文獻……………………………………………………………………………….44
第五章 附錄…………………………………………………………………………...49
dc.language.isozh-TW
dc.title利用量子力學計算探討電子予體─電子受體共軛高分子的結構設計對光電性質的影響zh_TW
dc.titleEffects of Structure Design of Donor-Acceptor Conjugated Polymers on Photoelectric Properties via Quantum Mechanical Calculationsen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee趙聖德(Sheng-Der Chao),郭錦龍(Chin-Lung Kuo),林皓武(Hao-Wu Lin)
dc.subject.keyword電子予體,電子受體,共軛高分子,能階,能隙,推電子基,拉電子基,zh_TW
dc.subject.keyworddonor,acceptor,conjugated polymer,energy level,band gap,electron-donating group,electron-withdrawing group,en
dc.relation.page77
dc.rights.note未授權
dc.date.accepted2015-08-20
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
2.66 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved