請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19802
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 姚宗珍 | |
dc.contributor.author | Pei-Wen Liao | en |
dc.contributor.author | 廖珮雯 | zh_TW |
dc.date.accessioned | 2021-06-08T02:20:04Z | - |
dc.date.copyright | 2015-09-24 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-20 | |
dc.identifier.citation | References
1. Ho, S.P.K., Michael P.Fong, Tiffany K.Lee, Stephen S.J.Wagner, Hanoch D.Ryder, Mark I.Marshall, Grayson W., The biomechanical characteristics of the bone-periodontal ligament-cementum complex. Biomaterials, 2010/9. 31(25): p. 6635-6646. 2. Meikle, M.C., The tissue, cellular, and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt. Vol. 28. 2006. 221-240. 3. Proffit, W.R., Contemporaru orthodontics, 5th edition. 2014. 4. S. BORD, A.H., R. M. HEMBRY, and J. E. COMPSTON, Stromelysin-1 (MMP-3) and Stromelysin-2 (MMP-10) Expression in Developing Human Bone: Potential Roles in Skeletal Development. Bone, 1998. 23(1): p. 7. 5. stromelysin 1. Enzyme Handbook, 1998. 6. Rio, M.-C., Stromelysin-3, a particular member of the matrix metalloproteinase family. Protease and Their Inhibitors in Cancer Metastasis, 2002 ed: p. 81-107. 7. Hideaki Nagase and J. Frederick Woessner, J., matrix metalloproteniases-minireview. The Journal of Biology Chemistry, 1999. 274(31): p. 21491. 8. Hill, P.A., Murphy, G.a, Docherty, A.J.P.b, Hembry, R.M., Millican, T.A., Reynolds, J.J., Meikle, M.C., The effects of selective inhibitors of matrix metalloproteinases (MMPs) on bone resorption and the identification of MMPs and TIMP-1 in isolated osteoclasts. Journal of Cell Science, 1994. 107(11): p. 3055-3064. 9. Azadeh Andisheh Tadbir , S.P., Hooman Ebrahimi2, Bijan Khademi3,4, Mahzad Malekzadeh4, Maryam Mardani2, Masumeh Taghva5, Yasaman Sardari, Serum Level of MMP-3 in Patients with Oral Squamous Cell Carcinoma - Lack of Association with Clinico-pathological Features. Asian Pacific Journal of Cancer Prevention. 13(9): p. 4545-8. 10. armeli, E., Moas, M., Reznick, A. Z. and Coleman, R., Matrix metalloproteinases and skeletal muscle: A brief review. Muscle Nerve, 2004. 29(2): p. 191-197. 11. Barbro Dahlen, J.S., Peter Howarth, Immunohistochemical localisation of the matrix metalloproteinases MMP-3 and MMP-9 within the airways in asthma. Throax, 1999. 54: p. 590-586. 12. Christine Gilles, D.F.N., Hiroshi Sato and Erik W. Thompson, Matrix Metalloproteases and Epitheial-to-Mesenchymal Transition. Rise and Fall of Epithelial Phenotype: Concepts of Epithelial-Mesenchymal Transition, 2005: p. 298-315. 13. Abdelmagid, S.M., M.F. Barbe, and F.F. Safadi, Role of inflammation in the aging bones. Life Sciences, 2014. 14. Bonucci, E., Main Suggested Calcification Mechanisms: Extracellular Matrix. Biological Calcification: Normal and Pathological Processes in the Early Stages, 2007: p. 507-559. 15. Lynch, C.C., Matrix metalloproteinases as master regulators of the vicious cycle of bone metastasis. Bone, 2011. 48(1): p. 44-53. 16. Sorsa, T., Tjaderhane, L. and Salo, T. , Matrix metalloproteinases (MMPs) in oral diseases. Oral Diseases, 2004. 10(6): p. 311-318. 17. Bord, S., et al., Production of collagenase by human osteoblasts and osteoclasts in vivo. Bone, 1996. 19(1): p. 35-40. 18. Alpagot T, B.C., Lundergan W, Chambers DW, Rudin R, Longitudinal evaluation of GCF MMP-3 and TIMP-1 levels as prognostic factors for progression of periodontitis. J Clin Periodontol, 2001. 28: p. 353-359. 19. Letra A, S.R., Rylands RJ, Silveira EM, de Souza AP, Wendell SK, Garlet GP, Vieira AR, MMP3 and TIMP1 variants contribute to chronic periodontitis and may be implicated in disease progression. J Clin Periodontol, 2012. 39: p. 707-716. 20. 趙筱芩, 孟., 吳應菲, 陳宇, 葛頌, 基質金屬蛋白酶-2和基質金屬蛋白酶-3在大鼠牙周炎模型中的表達. West China Journal of Stomology, 2006. 24(3): p. 202-5. 21. Rachel Hall; Dominique Septier , G.E.M.G., Stromelysin-1 (MMP-3) in forming enamel and predentine in rat incisor – coordinated distribution with proteoglycans suggests a functional role. The Histochemical Journal 1999. 31: p. 761. 22. Mazzoni, A., Immunohistochemical and biochemical assay of MMP-3 in human dentin. J Dent 2011. 39(3). 23. Boukpessi. T; Menashi. S ; Camoin.L; TenCate J.M.; Goldberg. M; Chaussain-Miller, C., The effect of stromelysin-1 (MMP-3) on non-collagenous extracellular matrix proteins of demineralized dentin and the adhesive properties of restorative resins. Biomaterials, 2008/11. 29(33): p. 4367. 24. Fanchon S, B.K., Septier D, Everts V, Beertsen W, Menashi S, Goldberg M., Involvement of matrix metalloproteinases in the onset of dentin mineralization. Eur J Oral Sci, 2004. 112: p. 171-176. 25. Goda S, K.Y., Domae E, Hayashi H, Tani-Ishii N, Iida J, Ikeo T. , Effects of JNK1/2 on the inflammation cytokine TNF-α-enhanced production of MMP-3 in human dental pulp fibroblast-like cells. International Endodontic Journal., 2014. 26. L. E. Randall, R.C.H., Temperospatial Expression of Matrix Metalloproteinases 1, 2, 3, and 9 During Early Tooth Development. Connective Tissue Research, 2002. 43: p. 205-211. 27. Fisher, K.U.E.O.a.L.W., Expression of SIBLINGs and Their Partner MMPs in Salivary Glands. J Dent Res, 2004. 83(9): p. 664-670. 28. Canavarro, C., R.P. Teles, and J. Capelli Junior, Matrix metalloproteinases -1, -2, -3, -7, -8, -12, and -13 in gingival crevicular fluid during orthodontic tooth movement: a longitudinal randomized split-mouth study. European Journal of Orthodontics, 2013. 35(5). p. 652-658. 29. Capelli Junior, J., et al., Matrix metalloproteinases and chemokines in the gingival crevicular fluid during orthodontic tooth movement. European Journal of Orthodontics,2011. 33(6). 2011. 705-711. 30. Krishna R. Asundi, B.S.a.D.M.R., MD, Cyclic Loading Inhibits Expression of MMP-3 but not MMP-1 in an In Vitro Rabbit Flexor Tendon Model. Clin Biomech, 2008. 23(1): p. 117-121. 31. Fitzgerald, J.B., M. Jin, and A.J. Grodzinsky, Shear and compression differentially regulate clusters of functionally related temporal transcription patterns in cartilage tissue. J Biol Chem, 2006. 281(34): p. 24095-103. 32. Takashi Yurube, K.N., Teppei Suzuki, Shuichi Kaneyama, Zhongying Zhang, Kenichiro Kakutani, Koichiro Maeno, Toru Takada, Masahiko Fujii, Masahiro Kurosaka, Minoru Doita, Matrix Metalloproteinase (MMP)-3 Gene Up-Regulation in a Rat Tail Compression Loading-Induced Disc Degeneration Model. J Orthop Res, 2010. 28: p. 1026-1032. 33. Mitsui, N., et al., Effect of compressive force on the expression of MMPs, PAs, and their inhibitors in osteoblastic Saos-2 cells. Life Sciences, 2006. 79(6): p. 575-583. 34. H.-H. Chang, C.-B.W., Y.-J. Chen, C.-Y. Weng, W.-P. Wong, Y.-J. Chen, B.-E. Chang, M.-H. Chen, C.-C.J. Yao, MMP-3 Response to Compressive Forces in vitro and in vivo. J DENT RES, 2008. 87(7): p. 692-696. 35. Tanaka, S., et al., Factors related to degradation of articular cartilagein osteoarthritis: a review. Seminars in Arthritis and Rheumatism, 1998. 27(6): p. 392-399. 36. Chen, C.-H., et al., Serum matrix metalloproteinases and tissue inhibitors of metalloproteinases in ankylosing spondylitis: MMP-3 is a reproducibly sensitive and specific biomarker of disease activity. Rheumatology, 2006. 45(4): p. 414-420. 37. Ribbens, C., et al., Synovial fluid matrix metalloproteinase‐3 levels are increased in inflammatory arthritides whether erosive or not. Rheumatology, 2000. 39(12): p. 1357-1365. 38. Green, M.J., et al., Serum MMP‐3 and MMP‐1 and progression of joint damage in early rheumatoid arthritis. Rheumatology, 2003. 42(1): p. 83-88. 39. Fujita H, M.T., Tanaka Y, Kawakami T, Kirita T, Yoshimura Y., MMP-3 activation is a hallmark indicating an early change in TMJ disorders, and is related to nitration. Int J Oral Maxillofac Surg., 2009. 38(1): p. 70-8. 40. Hunziker, E.B., Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis and Cartilage, 2002. 10(6): p. 432-463. 41. P. Tiilikainen, P.P., T. Kainulainen, H. Pernu and A. Raustia, MMP-3 and -8 expression is found in the condylar surface of temporomandibular joints with internal derangement. Journal of Oral Pathology Medicine, 2005. 34(1): p. 39-45. 42. Pertti Pirttiniemi, T.K., Timo Sorsa, Effect of decreased loading on the metabolic activity of the mandibular condylar cartilage in the rat. Eur J Orthod, 2004. 26(1): p. 1-5. 43. James M. Woods, K.J.K., Jr., Michael V. Volin, Jeffrey H. Ruth, Drew C. Woodruff, M. Asif Amin, Matthew A. Connors, Hirokazu Kurata, Ken-Ichi Arai, G. Kenneth Haines III, Pawan Kumar and Alisa E. Koch, IL-4 Adenoviral Gene Therapy Reduces Inflammation, Proinflammatory Cytokines, Vascularization, and Bony Destruction in Rat Adjuvant-Induced Arthritis. The Journal of Immunology 2001. 166: p. 1214-1222. 44. MarinaStolina, S., MikeOminsky, DeniseDwyer, FrankAsuncion, ZhaopoGeng, ScotMiddleton, Heather Brown, Jim Pretorius, Georg Schett, Brad Bolon, Ulrich Feige, Debra Zack, and Paul J Kostenuik, RANKL is a Marker and Mediator of Local and Systemic Bone Loss in Two Rat Models of Inflammatory Arthritis. JOURNAL OF BONE AND MINERAL RESEARCH 2005. 20(10): p. 1756-1765. 45. Christopher S. Stevenson, L.A.M., Douglas W. Morgan, in vivo models of inflammation 2nd Edition, Vol I. 46. Inc, C., Protocol for Induction of Adjuvant-Induced Arthritis (AIA) in Rats. 47. Pinkert, C.A., Transgenic Animal technology: A Laboratory Handbook. 2002. 48. Vergara, G.J., et al., In vitro fertilization in mice: Strain differences in response to superovulation protocols and effect of cumulus cell removal. Theriogenology, 1997. 47(6): p. 1245-1252. 49. E.Z.M.n.C.M.C.R.A. and A.G.l.-N.A.L.p.-J.n.J.A.L.p.-M.C.P.L.J.B.F.P. Llu ́ıs Montoliu, Genetic polymorphisms among C57BL/6 mouse inbred strains. Transgenic Research, 2011. 20(3): p. 481-489. 50. Mekada, K., et al., Genetic Differences among C57BL/6 Substrains. Experimental Animals, 2009. 58(2): p. 141-149. 51. Al-Qawasmi, R.A., J. K. Hartsfield, Jr, Root resorption associated with orthodontic force in inbred mice: genetic contributions. Eur J Orthod, 2006. 28(1): p. 13-19. 52. Richard Grose, S.W., wound healiing in transgenic mice. molecular biotechnology, 2004. 28: p. 147. 53. Banik, R.K., M. Kasai, and K. Mizumura, Reexamination of the Difference in Susceptibility to Adjuvant-Induced Arthritis among LEW/Crj, Slc/Wistar/ST and Slc/SD Rats. Experimental Animals, 2002. 51(2): p. 197-201. 54. Georgios Trichas, J.B.a.S.S., Use of the viral 2A peptide for bicistronic expression in transgenic mice. BMC Biology, 2008. 6(40): p. 1-13. 55. NANCY VAN OVERSTRAETEN-SCHLO ̈ GEL, M.D., YVES BEGUIN, ANDRE ́ GOTHOT, Limitations of the use of GFP transgenic mice in bone marrow transplantation studies. Leukemia Lymphoma, 2006. 47(7): p. 1392-1393. 56. SBI, Bioluminescent and Fluorescent Imaging Vectors. 57. Tsien, R.Y., THE GREEN FLUORESCENT PROTEIN. Annu. Rev. Biochem., 1998. 67: p. 509-44. 58. Sanders, J.K.M. and S.E. Jackson, The discovery and development of the green fluorescent protein, GFP. Chemical Society Reviews, 2009. 38(10): p. 2821-2822. 59. P., H., Improved GFP. nature, 1995. 373(23): p. 663. 60. Olesya V. Stepanenko, O.V.S., Daria M. Shcherbakova, Irina M. Kuznetsova, Кonstantin К. Turoverov and Vladislav V. Verkhusha, Modern f luorescent proteins: from chromophore formation to novel intracellular applications. BioTechniques, 2011. 51: p. 313-327. 61. Craggs, T.D., Green fluorescent protein: structure, folding and chromophore maturation. Chemical Society Reviews, 2009. 38(10): p. 2865-2875. 62. Shaner, N.C., P.A. Steinbach, and R.Y. Tsien, A guide to choosing fluorescent proteins. Nat Methods, 2005. 2(12): p. 905-9. 63. Xi Jiang, Z.K., Peter Maye, Alen Braut, and M.M. Justin Bellizzi, and David W. Rowe, Histological Analysis of GFP Expression in Murine Bone. journal of Histochemistry Cytochemistry, 2005. 53(5): p. 593-602. 64. Wilson, T.H., J. Woodland, Bioluminescence: living lights, lights for living. HARVARD UNIVERSITY PRESS 2012: p. 31-44. 65. Dalrymple, P.E.W.a.S.A., Models of Inflammation: Adjuvant-Induced Arthritis in the Rat. Current Protocols in Pharmacology, 2001: p. 551-555. 66. Hu, K., C. Wang, and X. Zhang, High pressure may inhibit periprosthetic osteogenesis. J Bone Miner Metab, 2010. 28(3): p. 289-98. 67. Robl, J.M., et al., Transgenic animal production and animal biotechnology. Theriogenology, 2007. 67(1): p. 127-133. 68. 聶鑫, 傅., 杜炎昌, 趙崇福, 五種脫鈣易對牙齒及牙周組織脫鈣效果之評估. Chinese Dental Journal 1984. 3(2): p. 29-33. 69. 熊正文, 李., 黃勇, 李春光, 骨組織脫鈣技術及在免疫組化染色中的應用. Chemical Journal of Comparative Medicine, 2004. 14(3): p. 175-178. 70. Yokota, C.M.H.S., Immunofluorescence technique for 100-nm-thick semithin sections of Epon-embedded tissues. Histochem Cell Biol, 2002. 117: p. 81-85. 71. Katherine Luby-Phelps, G.N., Joseph Fogerty and Joseph C. Besharse, Visualization of Identified GFP-expressing Cells by Light and Electron Microscopy. J Histochem Cytochem 2003. 51. 72. Georgios Trichas, J.B.a.S.S., Use of the viral 2A peptide for bicistronic expression in transgenic mice. BMC Biology, 2008. 6(40). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19802 | - |
dc.description.abstract | 基質金屬蛋白酶3 ( MMP-3 )和許多基質代謝的生理現象有關。當細胞受到機械力刺激時, 會對MMP-3進行調控。雖然矯正的力量也屬於機械力的一種, 而對於矯正力刺激和MMP-3之間的關係並不明確。為進一步研究MMP-3受到矯正力刺激後在生物體中骨質代謝所扮演的角色, 本實驗室開發帶有MMP-3啟動子的基因轉殖小鼠及基因轉殖大鼠, 藉由動物實驗觀察螢光或冷光的報導基因表現, 進一步瞭解生物體內MMP-3受到刺激後的變化。 本次實驗分做兩部分, 第一部分的實驗中, 利用放置矯正裝置於基因轉殖動物口中, 給予門齒及大臼齒不同方向的矯正力,並於不同的觀察時間點分析報導基因螢光或冷光訊號的改變, 了解MMP-3啟動子活化產生報導基因的時間及作用的位置。 實驗結果顯示, 牙齒受到矯正力的刺激後, 在第一天會出現綠螢光或冷光的表現 , 而在第三天時, 表現並不明顯。就出現螢光出現的位置來看, 綠螢光在張力側較壓力側明顯, 因此MMP-3在細胞受到機械力刺激後, 作用在第一天時上升, 在第三天時開始下降, 顯示MMP-3表現的時間短暫, 在骨質代謝初期時反應。 另一部分, 則是用佐劑誘導關節炎, 建立關節炎之疾病大鼠模型。在關節炎的動物實驗中, 以佐劑誘導後, 冷光在第2天時有明顯上升, 之後緩慢下降, 此冷光訊號雖然受到背景值影響, 但仍能分辨出病程中的變化。由冷光的表現中, 也顯示MMP-3表現在初期發炎反應。因本次實驗觀察的時間較短, 因此, 此動物模型仍待進一步的測試。 | zh_TW |
dc.description.abstract | Matrix metalloproteinase-3 (MMP-3) participates in many biological activities including turnover of extracellular matrix. Cells, while under mechanical force, can regulate MMP-3 expression. However, the relationship between orthodontic force and MMP-3 expression is still unclear. To further understand the regulation of MMP-3 by the orthodontic force in vivo, we generated transgenic mice and rats with reporter genes of GFP or luciferase under the regulation of MMP-3 promoter. We can detect MMP-3 expression patterns through visualizing the changes of the fluorescent or luminescent signals. In the first part of the experiments, we used different orthodontic appliances in transgenic mice/rats and applied different direction of the orthodontic forces to the incisors and molars. At different time points, we monitored the changes of the fluorescent or luminescent signals. The results show that the fluorescence and luminescence became stronger via orthodontics force application after one day. The intensity was higher at the tension side. The results implied that MMP-3 was turned on at very early stages of the bone metabolism and lasted for a relatively short period of time. In the second part of the experiments, we used adjuvant to induce arthritis (AIA) in transgenic rats. The intensity of the luminescence increased at the second day after induction, and gradually decreased till 2 weeks. Though with some background problems, MMP-3 was stimulated strongly at very early stage of inflammation. More experiments are required to study using this transgenic rat as an arthritis animal model. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T02:20:04Z (GMT). No. of bitstreams: 1 ntu-104-R01422028-1.pdf: 496957816 bytes, checksum: 0d8e8012b2fafcaeb8ff9c568169d7de (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 口試委員審定書.................................................................................................................# 誌謝..................................................................................................................................... i 中文摘要............................................................................................................................ ii 英文摘要........................................................................................................................... iii Chapter 1 Introduction ........................................................................................................1 1.1矯正與牙齒移動之理論 ........................................................................................... 1 1.2基質金屬蛋白. ( matrix metalloproteinase, MMPs ) ................................................... 2 1.2.1 MMP-3 ( Stromelysin-1)與矯正力量.................................................................... 3 1.2.2 MMP-3 ( Stromelysin-1)與關節炎........................................................................ 4 1.3 基因轉殖鼠 ( Transgenic mice/rat ) ........................................................................ 6 1.3.1 Transgenic mice..................................................................................................... 6 1.3.2 Transgenic rat......................................................................................................... 7 1.4 分子影像 ( Molecular Image ) ................................................................................ 7 1.4.1 綠螢光蛋白 ( Green Fluorescent Protein, GFP ) ................................................ 8 1.4.2 冷光酵素 ( Luciferase ) ...................................................................................... 9 Chapter 2 實驗目的......................................................................................................... 10 Chapter 3 Material and Methods ...................................................................................... 11 3.1 基因轉殖鼠 ( Transgenic mice/ rat ) .................................................................... .11 3.1.1 基因轉殖小鼠 ................................................................................................... 11 3.1.2 基因轉殖大鼠 ................................................................................................... 11 3.1.3 基因轉殖小鼠/大鼠麻醉及犧牲方式 ............................................................. 12 3.2 分子影像擷取 ( Molecular image ) ...................................................................... 12 3.2.1 綠螢光蛋白 ( Green Fluorescent Protein, GFP) .............................................. 12 3.2.1-1 基因轉殖小鼠之GFP ................................................................................. 12 3.2.1-2 基因轉殖大鼠之GFP .................................................................................. 12 3.2.2 基因轉殖大鼠之Luciferase .............................................................................. 13 3.3 佐劑誘導關節炎 .................................................................................................... 14 3.3.1 實驗組及對照組 ............................................................................................... 14 3.3.2 佐劑施打 ........................................................................................................... 14 3.3.2-1 臨床測量 ................................................................................................... 14 3.3.2-2 顯微電腦斷層影像 ( microCT image ) .................................................... 15 3.3.2-3 螢光及冷光影像 ....................................................................................... 15 3.4 矯正牙齒移動 ........................................................................................................ 15 3.4.1 基因轉殖小鼠 ..................................................................................... ............. 15 3.4.2 基因轉殖大鼠 ................................................................................................... 17 3.5 切片製作 ................................................................................................................ 18 3.5.1 樹脂切片 ......................................................................................................... 18 3.5.1-1 包埋 ........................................................................................................... 18 3.5.1-2 切片 ........................................................................................................... 19 3.5.1-3 載片 ........................................................................................................... 19 3.5.1-4 Toluidine blue 染色 ................................................................................... 20 3.5.2 石蠟切片 ........................................................................................................... 20 3.5.2-1 包埋 ............................................................................................................. 20 3.5.2-2 切片 ............................................................................................................. 20 3.5.2-3 免疫螢光染色 ............................................................................................. 21 Chapter 4 Results ............................................................................................................. 22 4.1 基因轉殖小鼠與矯正力量刺激 .......................................................................... 22 4.1.1 Anterior-posterior movement............................................................................. 22 4.1.2 Lateral movement ( expansion ) at incisor ........................................................ 22 4.1.3 Lateral movement ( expansion ) at molar ......................................................... 23 4.2 Wound healing test ................................................................................................... 23 4.3 佐劑誘導關節炎之基因轉殖大鼠模型 ................................................................ 23 4.3.1 D-Luciferin之kinetic curve ............................................................................. 23 4.3.2 佐劑誘導關節炎之基因轉殖大鼠-N1 病程發展 ........................................ 24 4.3.3 背景值測試 .................................................................................................... 25 4.3.4 關節處壓力測試 ............................................................................................ 26 4.3.5 佐劑誘導關節炎之基因轉殖大鼠-N2 病程發展 ........................................ 27 4.4 基因轉殖大鼠與矯正力量刺激 ......................................................................... 27 4.4.1 基因轉殖大鼠N1測試 .................................................................................. 27 4.4.2 基因轉殖大鼠N2, N3與矯正力量刺激 ....................................................... 28 Chapter 5 Discussion ....................................................................................................... 31 5.1基因轉殖小鼠對於矯正力量刺激之螢光表現 .................................................... 31 5.1.1 門齒模型 ........................................................................................................... 31 5.1.2 臼齒模型 ........................................................................................................... 32 5.2 基因轉殖小鼠之MMP-3表現與傷口癒合 .......................................................... 32 5.3 基因轉殖小鼠之繁殖及基因表現 ........................................................................ 33 5.4 基因轉殖大鼠之關節炎模型 ................................................................................ 33 5.4.1 基因轉殖大鼠之篩選 ....................................................................................... 34 5.4.2 N2關節炎病程發展 .......................................................................................... 34 5.5 基因轉殖大鼠對於機械性力量刺激之表現 ........................................................ 35 5.6 基因轉殖大鼠之報導基因表現 ............................................................................ 37 Chapter 6 Conclusion ....................................................................................................... 39 Chapter 7 Future work ..................................................................................................... 40 Figures .............................................................................................................................. 41 References ........................................................................................................................ 92 Appendix .......................................................................................................................... 98 | |
dc.language.iso | zh-TW | |
dc.title | 基質金屬蛋白酶-3 基因啟動子- 基因轉殖小鼠及基因轉殖大鼠對矯正機械性刺激之表現 | zh_TW |
dc.title | The Induction of reporters by orthodontic force in MMP-3 promoter- transgenic mice and rats | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 宋向軒,張百恩,張玉芳 | |
dc.subject.keyword | 基質金屬蛋白?,矯正牙齒移動,基因轉殖動物, | zh_TW |
dc.subject.keyword | Matrix metalloproteinase-3,orthodontic tooth movement,transgenic mice/rat,reporter,GFP,luciferase, | en |
dc.relation.page | 108 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2015-08-20 | |
dc.contributor.author-college | 牙醫專業學院 | zh_TW |
dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
顯示於系所單位: | 臨床牙醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 485.31 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。