Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19785
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 徐善慧 | |
dc.contributor.author | Kuo-Wei Cheng | en |
dc.contributor.author | 程國瑋 | zh_TW |
dc.date.accessioned | 2021-06-08T02:19:01Z | - |
dc.date.copyright | 2015-08-25 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-20 | |
dc.identifier.citation | [1] Krusis FE, Fissan H, Peled A. Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications-a review. J Aerrosol Sci 1998;29:511-535.
[2] Ahmed N, Fessi H, Elaissari A. Theranostic applications of nanoparticles in cancer. Drug Discov Today 2012;17:928-934. [3] Chatterjee J, Haik Y, Chen CJ. Size dependent magnetic properties of iron oxide nanoparticles. J Magn Magn Mater 2003;257:113-118. [4] Pankhurst QA, Connolly J, Jones SK, Dobson J. Applications of magnetic nanoparticles in biomedicine. J Phys D: Appl Phys 2003;36:R167-R181. [5] Silva AC, Oliveira TR, Mamani JB, Malheiros SMF, Malavolta L, Pavon LF, Sibov TT, Amaro E Jr, Tannús A, Vidoto ELG, Matins MJ, Santos RS, Gamarra LF. Application of hyperthermia induced by superparamagnetic iron oxide nanoparticles in glioma treatment. Int J Nanomed 2011;6:591-603. [6] Lam T, Pouliot P, Avti P, Lesage F, Kakkar A. Superparamagnetic iron oxide based nanoprobes for imaging and theranostics. Adv Colloid Interface Sci 2013;199:95-113. [7] Albornoz C, Jacobo S E. Preparation of a biocompatible magnetic film from an aqueous ferrofluid. J Magn Magn Mater 2006;305:12-15. [8] Kim EH, Lee HS, Kwak BK, Kim BK. Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent. J Magn Magn Mater 2005;289:328-330. [9] Chin AB, Yaacob II. Synthesis and characterization of magnetic iron oxide nanoparticles via w/o microemulsion and Massart’s procedure. J Mater Process Technol 2007;191:235-237. [10] Wan J, Chen X, Wang Z, Yang X, Qian Y. A soft-template-assisted hydrothermal approach to single-crystal Fe3O4 nanorods. J Cryst Growth 2005;276:571-576. [11] Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005;26:3995-4201. [12] Zhang Y, Kohler N, Zhang M. Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 2002;23(7):1553-1561. [13] Pratsinis SE, Vemury S. Particle formation in gases—a review. Powder Technol 1996;88:267-273. [14] Babes L, Denizot B, Tanguy G, Le Jeune JJ, Jallet P. Synthesis of iron oxide nanoparticles used as MRI contrast agents: a parametricstudy. J Colloid Interface Sci 1999;212:474-482. [15] Chan DCF, Kirpotin DB, Bunn PA. Synthesis and evaluation of colloidal magnetic iron-oxides for the site-specific radiofrequency-induced hyperthermia of cancer. J Magn Magn Mater 1993;122:374-378. [16] Jordan A, Wust P, Fahling H, John W, Hinz A, Felix R. Inductive heating of ferrimagnetic particles and magnetic fluids: Physicalevaluation of their potential for hyperthermia. Int J Hyperthermia 1993;9(1):51-68. [17] Laurent S, Dutz S, Häfeli U, Mahmoudi M. Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci 2011;166:8-23. [18] Eeckman F, Moeぴs AJ, Amighi K. Evaluation of a new controlleddrug delivery concept based on the use of thermoresponsive polymers. Int J Pharm 2002;241:113-125. [19] Christie RJ, Grainger DW. Design strategies to improve soluble macromolecular delivery constructs. Adv Drug Deliv Rev 2003;55:421-437. [20] Detlef MS, Thomas SR. Thermosensitive magnetic polymer particles as contactless controllable drug carriers. J Magn Magn Mater 2006;302:267-271. [21] Sonvico F, Mornet S, Vasseur S, Dubernet C, Jaillard D, Degrouard J, Hoebeke J, Duguet E, Colombo P, Couvreur P. Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: synthesis, physicochemical characterization, and in vitro experiments. Bioconjugate Chem 2005;16:1181-1188. [22] Ito A, Shinkai M, Honda H, Kobayashi T. Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng 2005;100:1-11. [23] Gupta AK, Curtis ASG. Surface modified superparamagnetic nanoparticles for drug delivery: interaction studies with human fibroblasts in culture. J Mater Sci Mater Med 2004;15:493-496. [24] Kohler N, Fryxell GE, Zhang MQ. A Bifunctional poly(ethylene glycol) silane immobilized on metallic oxide-based nanoparticles for conjugation with cell targeting agents. J Am Chem Soc 2004;126:7206-7211. [25] Zhang J, Misra RDK. Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: Core–shell nanoparticle carrier and drug release response. Acta Biomater 2007;3:838-850. [26] McCarthy JR, Weissleder R. Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev 2008;60:1241-1251. [27] Xie J, Huang J, Li X, Sun S, Chen X. Iron oxide nanoparticle platform for biomedical applications. Curr Med Chem 2009;16:1278-1294. [28] Zhu L, Wang D ,Wei X, Zhu X, Li J, Tu C, Su Y, Wu J, Zhu B, Yan D. Multifunctional pH-sensitive superparamagnetic iron-oxide nanocomposites for targeted drug delivery and MR imaging. J Control Release 2013;169:228-238. [29] Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 2004;56:1649-1659. [30] Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 2000;65:271-284. [31] Moore A, Marecos E, Bogdanov A, Weissleder R. Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model. Radiology 2000;214:568-574. [32] Rosen J.E., Chan L, Shieh DB, Gu FX. Iron oxide nanoparticles for targeted cancer imaging and diagnostics. Nanomed Nanotechnol Bio Med 2012;8:275-290. [33] Lu YJ, Low PS. Immunotherapy of folate receptor-expressing tumors: review of recent advances and future prospects. J Control Release 2003;91:17-29. [34] Islam T, Josephson L. Current state and future applications of active targeting in malignancies using superparamagnetic iron oxide nanoparticles. Cancer Biomark 2009;5:99-107. [35] Chen T, Cheng T, Hung Y, Lin K, Liu G, Wang Y. Targeted folic acid–PEG nanoparticles for noninvasive imaging of folate receptor by MRI. J Biomed Mater Res A 2008;87A:165-175. [36] Mohapatra S, Mallick SK, Maiti TK, Ghosh SK, Pramanik P. Synthesis of highly stable folic acid–conjugated magnetite nanoparticles for targeting cancer cells. Nanotechnology 2007;18:385102. [37] Verma A, Stellacci F. Effect of surface properties on nanoparticle-cell interactions. Small 2010;6:12-21. [38] Hu F, Neoh K, Cen L, Kang E. Cellular response to magnetic nanoparticles “PEGylated” via surface-initiated atom transfer radical polymerization. Biomacromolecules 2006;7:809-816. [39] Soenen SJ, Himmelreich U, Nuytten N, Cuyper MD. Cytotoxic effects of iron oxide nanoparticles and implications for safety in cell labelling. Biomaterials 2011;32:195-205. [40] Guelcher SJ, Gallagher KM, Didier JE, Klinedinst DB, Doctor JS, Goldstein AS, Wilkes GL, Beckman EJ, Hollinger JO. Synthesis of biocompatible segmented polyurethanes from aliphatic diisocyanates and diurea diol chain extenders. Acta Biomater 2005;1:471-484. [41] Yang CH, Yang HJ, Wen TC, Wu MS, Chang JS. Mixture design approaches to IPDI–H6XDI–XDI ternary diisocyanate based waterborne polyurethanes. Polymer 1999;40:871-885. [42] Hsu SH, Tseng HJ, Lin YC. The biocompatibility and antibacterial properties of waterborne polyurethane-silver nanocomposites. Biomaterials 2010;31:6796-6808. [43] Ding M, Li J, Tan H, Fu Q. Self-assembly of biodegradable polyurethanes for controlled delivery applications. Soft Matter 2012;8:5414-5428. [44] Sivak WN, Pollack IF, Petoud S, Zamboni WC, Zhang J, Beckman EC. LDI-glycerol polyurethane implants exhibit controlled release of DB-67 and anti-tumor activity in vitro against malignant gliomas. Acta Biomater 2008;4:852-862. [45] Zhang J, Wu M, Yang J, Wu Q, Jin Z. Anionic poly (lactic acid)-polyurethane micelles as potential biodegradable drug delivery carriers. Colloids Surf A 2009;337:200-204. [46] Yu L, Zhou L, Ding M, Li J, Tan H, Fu Q, He X. Synthesis and characterization of novel biodegradable folate conjugated polyurethanes. J Colloid Interface Sci 2011;358:376-383. [47] Chen YP, Hsu SH. Preparation and characterization of novel waterbased biodegradable polyurethane nanoparticles encapsulating superparamagnetic iron oxide and hydrophobic drugs. J Mater Chem B 2014;2:3391-3401. [48] Hsu SH, Ho TT, Tseng TC. Nanoparticle uptake and gene transfer efficiency for MSCs on chitosan and chitosan-hyaluronan substrates. Biomaterials 2012;33:3639-3650. [49] Hsu SH, Hung KC, Lin YY, Su CH, Yeh HY, Jeng US, Lu CY, Dai SH, Lin JC. Water-based synthesis and processing of novel biodegradable elastomers for medical applications. J Mater Chem B 2014;2:5083-5092. [50] Ou CW, Su CH, Jeng US, Hsu SH. Characterization of Biodegradable Polyurethane Nanoparticles and Thermally Induced Self-Assembly in Water Dispersion. ACS Appl Mater Interfaces 2014;6:5685-5694. [51] Sun J, Zhou S, Hou P, Yang Y, Weng J, Li X, Li M. Synthesis and characterization of biocompatible Fe3O4 nanoparticles. J Biomed Mater Res A 2007;80(A):333-341. [52] Srichatrapimuk VW, Cooper SL. Infrared thermal analysis of polyurethane block polymers. J Macromol Sci Phys 1978;15:267-311. [53] Zhang SB, Lv HT, Zhang H, Wang B, Xu YM. Waterborne polyurethanes: spectroscopy and stability of emulsions. J Appl Polym Sci 2005;101:597-602. [54] Wang YX, Hussain SM, Krestin GP. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 2001;11:2319-2331. [55] Chertok B, Moffat BA, David AE, Yu F, Bergemann C, Ross BD, Yang VC. Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials 2008;29:487-496. [56] Liu TY, Hu SH, Liu DM, Chen SY, Chen IW. Biomedical nanoparticle carriers with combined thermal and magnetic responses. Nano Today 2009;4:52-65. [57] Mahmoudi M, Simchi A, Milani AS, Stroeve P. Cell toxicity of superparamagnetic iron oxide nanoparticles. J Colloid Interface Sci 2009;336:510-518. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19785 | - |
dc.description.abstract | Superparamagnetic iron oxide nanoparticles (SPIO NPs) have a wide range of biomedical applications such as in magnetic resonance imaging (MRI), targeting, and hyperthermia therapy. Aggregation of SPIO NPs can occur because of the hydrophobic surface and high surface energy of SPIO NPs. Here, we developed a facile method to encapsulate SPIO NPs in amphiphilic biodegradable polymer. Anionic biodegradable polyurethane nanoparticles (PU NPs) with ~40 nm size and different chemistry were prepared by waterborne processes. SPIO NPs were synthesized from chemical co-precipitation. SPIO NPs were then added in the aqueous dispersion of PU NPs, followed with high frequency (~20 kHz) ultrasonic vibration for 3 min. This method rendered SPIO-PU hybrid NPs (size ~110 nm) suspended in water. SPIO-PU hybrid NPs contained about 50-60 wt% SPIO and retained the superparamagnetic property (evaluated by a magnetometer) as well as high contrast in MRI. Using the same method, hydrophobic drug (Vitamin K3, VK3) or (9-(methylaminomethyl)anthracene, MAMA) could also be encapsulated in PU NPs. The VK3-PU or MAMA-PU hybrid NPs had ~40 nm size and different release profiles for PU with different chemistry. The encapsulation efficiency for VK3 and MAMA was high (~95%) without burst release. The encapsulation mechanism may be attributed to the low Tg and good compliance of PU NPs. The new encapsulation method by waterborne biodegradable PU NPs is simple, rapid, and effective to produce multimodular NP carriers | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T02:19:01Z (GMT). No. of bitstreams: 1 ntu-104-R02549036-1.pdf: 11703605 bytes, checksum: efe1b3e3064bc1f9ad0a235a7e092e13 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 目錄 v 圖目錄 viii 表目錄 x 第一章 文獻回顧 1 1.1. 磁性奈米粒子與生醫應用 1 1.2. 超順磁氧化鐵奈米粒子的表面改質 1 1.3. 磁性奈米粒子的熱療應用 2 1.4. 磁奈米粒子在藥物載體的應用 2 1.5. 多功能合一的磁奈米粒子 3 1.6. 抗癌藥物的奈米載體進行標靶應用 4 1.7. 高分子包覆磁奈米粒子對細胞攝取的毒性 5 1.8. 聚胺酯 6 1.9. 水性聚胺酯奈米粒子的生醫應用 6 1.10. 可生物降解聚胺酯作為藥物載體的應用 7 1.11. 水性PU Ns包覆磁性奈米粒子及藥物 8 1.12. 研究動機與目的 11 第二章 研究方法 12 2.1. 研究架構 12 2.2. 水性生物可降解聚胺酯奈米粒子超音波震盪法包覆超順磁氧化鐵奈米粒子之合成與製備 14 2.2.1. 水性生物可降解聚胺酯奈米粒子(Waterborne biodegradable polyurethane nanoparticles, PU NPs)的合成 14 2.2.2. 水性生物可降解聚胺酯薄膜製備與水膨潤率測試 17 2.2.3. 超順磁氧化鐵奈米粒子(SPIO NPs)的合成 17 2.2.4. 以超音波震盪法包覆超順磁奈米粒子於水性聚胺酯奈米粒子 18 2.3. 以超音波震盪法製備的SPIO-PU NPs之物化性質分析 20 2.3.1. 粒徑與界面電位分析 20 2.3.2. 穿透式電子顯微鏡分析 20 2.3.3. 衰減全反射傅立葉紅外線光譜分析 20 2.3.4. 熱重分析儀分析 21 2.3.5. 磁化性質與磁滯曲線分析 21 2.3.6. 核磁共振影像儀測量( MRI分析) 21 2.3.7. 高週波磁場加熱分析 22 2.4. 以超音波震盪法製備drug-PU NPs與drug-SPIO-PU NPs之方法、藥物釋放與細胞毒性分析 22 2.4.1. 以超音波震盪法包覆疏水性藥物於水性聚胺酯奈米粒子 22 2.4.2. 藥物釋放實驗 23 2.4.3. 以超音波震盪法同時包覆疏水性藥物與磁性奈米粒子於水性聚胺酯奈米粒子(drug-SPIO-PU NPs) 23 2.4.4. 多功能奈米載體(MAMA-SPIO-PU)之細胞毒性與攝取實驗 24 2.5. 統計分析 26 第三章 實驗結果 27 3.1. 水性生物可降解聚胺酯經超音波震盪法包覆超順磁氧化鐵奈米粒子之合成製備與物化性質分析 27 3.1.1. 水性生物可降解聚胺酯奈米粒子( PU NPs)的製備 27 3.1.2. 水性生物可降解聚胺酯薄膜製備與水膨潤率測試 27 3.1.3. 超順磁奈米氧化鐵粒子(SPIO-NPs)的製備 27 3.1.4. 以超音波震盪法包覆SPIO NPs於PU NPs 28 3.1.5. 粒徑與界面電位分析 28 3.1.6. 穿透式電子顯微鏡分析 28 3.1.7. 傅立葉紅外線光譜(FTIR)分析 29 3.1.8. 熱重性質(TGA)分析 29 3.1.9. 磁化性質(SQUID)分析 30 3.1.10. 核磁共振顯影(MRI)分析 30 3.1.11. 高週波磁場加熱實驗 30 3.2. 以超音波震盪法製備drug-PU NPs與drug-SPIO-PU NPs之方法、藥物釋放與細胞毒性分析 31 3.2.1. 以超音波震盪法製備的drug-PU NPs 粒徑與界面電位分析 31 3.2.2. 以超音波震盪法製備的drug-PU NPs之藥物釋放分析 31 3.2.3. 以超音波震盪法製備的MAMA-SPIO-PU NPs之藥物釋放分析 32 3.2.4. MAMA-SPIO-PU之細胞毒性與攝取分析 33 第四章 討論 34 4.1. 水性生物可降解聚胺酯經超音波震盪法包覆超順磁氧化鐵奈米粒子之合成製備與物化性質分析 34 4.1.1. 水性生物可降解聚胺酯奈米粒子(PU NPs)的合成 34 4.1.2. 以超音波震盪法包覆SPIO NPs於PU NPs 34 4.1.3. 穿透式電子顯微鏡(TEM)分析 35 4.1.4. 傅立葉紅外光吸收光譜(FTIR)分析 35 4.1.5. 熱重性質(TGA)分析 36 4.1.6. 磁化性質(SQUID)分析 36 4.1.7. 核磁共振顯影(MRI)分析 37 4.1.8. 高週波磁場加熱分析 37 4.2. 以超音波震盪法製備drug-PU NPs與drug-SPIO-PU NPs之方法、藥物釋放與細胞毒性分析 38 4.2.1.以超音波震盪法製備的drug-PU NPs之藥物釋放分析 38 4.2.2.以超音波震盪法製備的MAMA-SPIO-PU NPs之藥物釋放分析 39 4.2.3. MAMA-SPIO-PU之細胞毒性與攝取分析 39 第五章 結論 41 參考文獻 54 | |
dc.language.iso | zh-TW | |
dc.title | 利用超音波震盪法包覆超順磁氧化鐵奈米粒子與疏水性藥物於水性生物可降解聚胺酯奈米粒子之製備與性質分析 | zh_TW |
dc.title | A facile method to prepare superparamagnetic iron oxide and hydrophobic drug encapsulated biodegradable polyurethane nanoparticles | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張振榮,黃彥彰 | |
dc.subject.keyword | 超順磁奈米氧化鐵粒子;生物可降解聚胺酯奈米粒子;藥物釋放;混成奈米粒子, | zh_TW |
dc.subject.keyword | superparamagnetic iron oxide (SPIO); polyurethane;drug release;hybrid nanoparticles, | en |
dc.relation.page | 60 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2015-08-21 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
Appears in Collections: | 高分子科學與工程學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-104-1.pdf Restricted Access | 11.43 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.