Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19770
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙本秀(Pen-hsiu Grace Chao)
dc.contributor.authorChien-An Chenen
dc.contributor.author陳建安zh_TW
dc.date.accessioned2021-06-08T02:18:09Z-
dc.date.issued2015
dc.date.submitted2015-09-07
dc.identifier.citation1. Amiel, D., E. Billings, and F. L. Harwood., Collagenase activity in anterior cruciate ligament: protective role of the synovial sheath. Journal of Applied Physiology 69.3, 1990: p. 902-906.
2. Chao, P.h.G., H.Y. Hsu, and H.Y. Tseng, Electrospun microcrimped fibers with nonlinear mechanical properties enhance ligament fibroblast phenotype. Biofabrication, 2014. 6(3): p. 035008.
3. Pittenger, M.F., et al., Multilineage potential of adult human mesenchymal stem cells. science 284.5411, 1999: p. 143-147.
4. Altman, G.R.E.G., et al. , Cell differentiation by mechanical stress. Faseb Journal 16.2 2002: p. 270-272.
5. Uttayarat, P., et al., Microtopography and flow modulate the direction of endothelial cell migration. American Journal of Physiology-Heart and Circulatory Physiology 294.2 2008: p. H1027-H1035.
6. Tay, C.Y., et al., Micropatterned matrix directs differentiation of human mesenchymal stem cells towards myocardial lineage. Exp Cell Res, 2010. 316(7): p. 1159-68.
7. Zhu, J., et al., The regulation of phenotype of cultured tenocytes by microgrooved surface structure. Biomaterials, 2010. 31(27): p. 6952-6958.
8. Lee, C.H., et al., Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials, 2005. 26(11): p. 1261-70.
9. Surrao, D.C., et al., A crimp-like microarchitecture improves tissue production in fibrous ligament scaffolds in response to mechanical stimuli. Acta Biomater, 2012. 8(10): p. 3704-13.
10. Su, W.T., et al., The geometric pattern of a pillared substrate influences the cell-process distribution and shapes of fibroblasts. Micron, 2006. 37(8): p. 699-706.
11. Liu, W.F. and C.S. Chen, Engineering biomaterials to control cell function. Materials Today, 2005. 8(12): p. 28-35.
12. Kilian, K.A., et al., Geometric cues for directing the differentiation of mesenchymal stem cells. Proc Natl Acad Sci U S A, 2010. 107(11): p. 4872-7.
13. Li, F., et al., Cell shape regulates collagen type I expression in human tendon fibroblasts. Cell Motil Cytoskeleton, 2008. 65(4): p. 332-41.
14. Kaunas, R., et al., Cooperative effects of Rho and mechanical stretch on stress fiber organization. Proc Natl Acad Sci U S A, 2005. 102(44): p. 15895-900.
15. Mellad, J.A., D.T. Warren, and C.M. Shanahan, Nesprins LINC the nucleus and cytoskeleton. Curr Opin Cell Biol, 2011. 23(1): p. 47-54.
16. Chen, C.S., Mechanotransduction - a field pulling together? J Cell Sci, 2008. 121(Pt 20): p. 3285-92.
17. Versaevel, M., T. Grevesse, and S. Gabriele, Spatial coordination between cell and nuclear shape within micropatterned endothelial cells. Nat Commun, 2012. 3: p. 671.
18. Arnaout, M.A., S.L. Goodman, and J.P. Xiong, Structure and mechanics of integrin-based cell adhesion. Curr Opin Cell Biol, 2007. 19(5): p. 495-507.
19. Totsukawa, G., Yamakita, Y., Yamashiro, S., Hartshorne, D. J., Sasaki, Y., & Matsumura, F., Distinct roles of ROCK (Rho-kinase) and MLCK in spatial regulation of MLC phosphorylation for assembly of stress fibers and focal adhesions in 3T3 fibroblasts.
20. Kureishi, Y., et al, Rho-associated kinase directly induces smooth muscle contraction through myosin light chain phosphorylation.' Journal of Biological Chemistry 272.19 (1997): 12257-12260.
21. Katoh, K., Y. Kano, and Y. Noda, Rho-associated kinase-dependent contraction of stress fibres and the organization of focal adhesions. J R Soc Interface, 2011. 8(56): p. 305-11.
22. Tan, W., et al., Development and evaluation of microdevices for studying anisotropic biaxial cyclic stretch on cells. Biomed Microdevices, 2008. 10(6): p. 869-82.
23. Zheng, W., et al., A microfluidic flow-stretch chip for investigating blood vessel biomechanics. Lab Chip, 2012. 12(18): p. 3441-50.
24. Ahmed, W.W., et al., Myoblast morphology and organization on biochemically micro-patterned hydrogel coatings under cyclic mechanical strain. Biomaterials, 2010. 31(2): p. 250-8.
25. Throm Quinlan, A.M., et al., Combining dynamic stretch and tunable stiffness to probe cell mechanobiology in vitro. PLoS One, 2011. 6(8): p. e23272.
26. Barron, V., et al., The effect of physiological cyclic stretch on the cell morphology, cell orientation and protein expression of endothelial cells. J Mater Sci Mater Med, 2007. 18(10): p. 1973-81.
27. Breen, E.C., Mechanical strain increases type I collagen expression in pulmonary fibroblasts in vitro. Journal of applied physiology 88.1, (2000: p. 203-209.
28. Subramony, S.D., et al., The guidance of stem cell differentiation by substrate alignment and mechanical stimulation. Biomaterials, 2013. 34(8): p. 1942-53.
29. Sarasa-Renedo, A., V. Tunc-Civelek, and M. Chiquet, Role of RhoA/ROCK-dependent actin contractility in the induction of tenascin-C by cyclic tensile strain. Exp Cell Res, 2006. 312(8): p. 1361-70.
30. Schefe, J.H., et al., Quantitative real-time RT-PCR data analysis: current concepts and the novel 'gene expression's CT difference' formula. J Mol Med (Berl), 2006. 84(11): p. 901-10.
31. Tanner, K., et al., Dissecting regional variations in stress fiber mechanics in living cells with laser nanosurgery. Biophys J, 2010. 99(9): p. 2775-83.
32. Foolen, J., M.W. Janssen-van den Broek, and F.P. Baaijens, Synergy between Rho signaling and matrix density in cyclic stretch-induced stress fiber organization. Acta Biomater, 2014. 10(5): p. 1876-85.
33. Amano, M., et al, Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase).
34. Amano, M., et al., Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase.
35. <Stress fiber organization regulated by MLCK and Rho-kinase in cultured human fibroblasts.pdf>.
36. Deguchi, S., T. Ohashi, and M. Sato, Tensile properties of single stress fibers isolated from cultured vascular smooth muscle cells. J Biomech, 2006. 39(14): p. 2603-10.
37. Hotulainen, P. and P. Lappalainen, Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. J Cell Biol, 2006. 173(3): p. 383-94.
38. Chen, C.S., et al., Cell shape provides global control of focal adhesion assembly. Biochemical and Biophysical Research Communications, 2003. 307(2): p. 355-361.
39. Nathan, A.S., et al., Mechano-topographic modulation of stem cell nuclear shape on nanofibrous scaffolds. Acta Biomater, 2011. 7(1): p. 57-66.
40. Yang, G., R.C. Crawford, and J.H. Wang, Proliferation and collagen production of human patellar tendon fibroblasts in response to cyclic uniaxial stretching in serum-free conditions. J Biomech, 2004. 37(10): p. 1543-50.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19770-
dc.description.abstract韌帶由平行波浪狀結構的膠原蛋白纖維所組成,而此波浪狀結構提供韌帶良好的機械性質並給予韌帶細胞較好的行為表現。之前研究發現波浪狀電紡絲結構相較於直線電紡絲更能增進韌帶細胞的基因表現。基於探討不同曲率是如何影響細胞行為表現,我們製作了直線及不同彎曲度的PDMS基質並種入間質幹細胞。結果發現在直線及不同曲率中細胞型態有顯著性的差異;在0.5X wavy pattern中細胞擁有最大的細胞及細胞核,而細胞核的曲率隨著pattern曲率增加而增加。之前研究提到 ROCK 及 MLCK 是重要的兩個途徑影響細胞骨架及調控細胞行為。當我們給予ROCK與MLCK抑制後,發現細胞型態受到影響且mRNA表現也有所差異。此外,我們亦給予動態拉伸刺激發現拉伸過後在0.5X wavy pattern中細胞及細胞核尺寸都變小。我們猜測ROCK與 MLCK 在直線及不同曲率結構扮演不同的角色去調控細型態。之後我們會更進一步探討ROCK與 MLCK在拉伸中如何調控細胞的行為。 zh_TW
dc.description.abstractNative ligament tissues are composed by aligned-wavy collagen fibers and the wavy structures are believed to provide ligament with mechanical properties and to improve ligament fibroblast behaviors. Previous studies found that cells on electrospun fibers with wavy structures enhanced ligament phenotypes than on straight fibers. In order to investigate the relationship between the degree of waviness and cell behaviors, we fabricated PDMS microgroove substrates with straight and different wavy structures and then seeded human mesenchymal stem cells (MSCs) on the microgrooves. We observed distinct cell morphologies on straight and different wavy structures. On 0.5X wavy structures, cells displayed the largest cell and nucleus sizes and nucleus curvature increased in accordance with increasing curvature of wavy structures. Previous studies found that ROCK and MLCK are important mediators to affect cell cytoskeleton and regulate cell behaviors. Upon ROCK and MLCK inhibitor treatments, we found cell morphologies and mRNA expression were affected by ROCK and MLCK. Additionally, we provided tensile loading. In 0.5X wavy group, cell and nucleus sizes became smaller compared to the control group after tensile loading. We hypothesize that ROCK and MLCK have different role in straight and wavy groups resulting in cell phenotype. In the future, we will understand ROCK and MLCK how to regulate cell phenotypes on tensile loading even more.en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:18:09Z (GMT). No. of bitstreams: 1
ntu-104-R02548047-1.pdf: 5164216 bytes, checksum: 6c8da81a4857a48c25b8579d0558efd5 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents誌謝 3
摘要 I
Abstract II
Contents IV
List of Figures V
Chapter 1 Introduction 1
1.1Research Purpose 1
1.2 Microenvironment 2
1.3 Cell Shape Effects Cell Phenotype 3
1.4 Cellular morphologies and Cytoskeleton 4
1.5 Mechanical Loading Stimulation 5
Chapter 2 Material and Method 7
2.1 Microfabrication 7
2.2 Cell Culture 7
2.3 Cell Morphology 8
2.4 Mechanical Loading 8
2.5 Cytoskeleton Inhibitor Treatment 9
2.6 RNA Extraction 9
2.7 Quantification of mRNA Levels 10
2.8 Statistical Analysis 11
Chapter 3 Results 12
3.1 Cell Morphology 12
3.2 Cell Morphology After ROCK and MLCK Inhibitor Treatment 13
3.3 Microgrooves Effect Cell Gene Expression 14
3.4 The Effects of Mechanical Stimulation 15
Chapter 4 Discussion 17
Reference 37
dc.language.isoen
dc.title波浪狀結構及機械拉伸調控間質幹細胞結構與分化zh_TW
dc.titleWavy Structure and Mechanical Loading Regulate Mesenchymal stem cells (MSCs) Structure and Differentiationen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee沈湯龍,郭柏齡,趙遠宏
dc.subject.keyword間質幹細胞結構與分化,zh_TW
dc.subject.keywordMesenchymal stem cells (MSCs) Structure and Differentiation,en
dc.relation.page39
dc.rights.note未授權
dc.date.accepted2015-09-07
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
5.04 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved