請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19753完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡志宏 | |
| dc.contributor.author | Ying-Ting Chen | en |
| dc.contributor.author | 陳瀅婷 | zh_TW |
| dc.date.accessioned | 2021-06-08T02:17:10Z | - |
| dc.date.copyright | 2017-02-21 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-10-10 | |
| dc.identifier.citation | [1] N. Johansson, U. K ouml;rner, and P. Johansson, 'Performance evaluation of scheduling algorithms for Bluetooth,' Broadband communications, Springer US, 2000. [2] R. Palacios, et al, 'Analysis of an Energy-Efficient MAC Protocol Based on Polling for IEEE 802.11 WLAN,' IEEE International Conference on Communications (ICC), 2015. [3] A. Abdrabou, and A. M. Gaouda, 'Considerations for packet delivery reliability over polling-based wireless networks in smart grids,' Computers Electrical Engineering, 2014. [4] Y. Li et al, 'Energy modeling and optimization through joint packet size analysis of BSN and WiFi networks,' IEEE 30th International Performance Computing and Communications Conference (IPCCC), 2011. [5] A. Awad, et al, 'Real-time implementation and evaluation of an adaptive energy-aware data compression for wireless EEG monitoring systems,' IEEE 10th International Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness (QShine), 2014. [6] B. Mrazovac, et al, 'A human detection method for residential smart energy systems based on ZigBee RSSI changes,' IEEE Transactions on Consumer Electronics, vol. 58, no.3, 2012, pp. 819-824. [7] J. Mitsugi, et al, 'Bridging UPnP and ZigBee with CoAP: protocol and its performance evaluation,' Proceedings of the workshop on Internet of Things and Service Platforms, 2011. [8] J. Park, et al, 'A zigbee network-based multi-channel heart rate monitoring system for exercising rehabilitation patients,' TENCON 2007-2007 IEEE Region 10 Conference, 2007. [9] M. Benocci, et al, 'Optimizing ZigBee for data streaming in body-area bio-feedback applications,' IEEE 3rd International Workshop on Advances in sensors and Interfaces, 2009. [10] D. Miorandi, A. Zanella, and G. Pierobon, 'Performance evaluation of Bluetooth polling schemes: an analytical approach,' Mobile Networks and applications vol. 9, no.1, 2004, pp. 63-72. [11] A. Capone, M. Gerla, and R. Kapoor, 'Efficient polling schemes for Bluetooth picocells,' IEEE International Conference on Communications, 2001, vol.7. [12] J-B. Lapeyrie, and T. Thierry, 'FPQ: a fair and efficient polling algorithm with QoS support for Bluetooth piconet,' INFOCOM, vol. 2, 2003. [13] R.A. Yaiz, and G. Heijenk, 'Polling best effort traffic in Bluetooth,' Wireless Personal Communications, vol. 23, no.1, 2002, pp. 195-206. [14] H. Takagi, 'Queuing analysis of polling models,' ACM Computing Surveys (CSUR), vol.20, no.1, 1988, pp. 5-28. [15] J. Baker, and I. Rubin, 'Polling with a general-service order table,' IEEE Transactions on Communications, vol.35, no.3, 1987, pp. 283-288. [16] M. Ferguson, and Y. Aminetzah, 'Exact results for nonsymmetric token ring systems,' IEEE Transactions on Communications, vol.33, no.3, 1985, pp. 223-231. [17] H. Takagi, and L. Kleinrock, 'Analysis of polling systems,' Performance Evaluation, vol.5, no.3, 1985, pp. 206. [18] O. Boxma, H. Levy, and J. Weststrate, 'Efficient visit orders for polling systems,' Performance Evaluation, vol.18, no.2, 1993, pp. 103-123. [19] S. Panwar, T. Philips, and M. Chen, 'Golden ratio scheduling for low delay flow control in computer networks,' GLOBECOM, 1988. [20] G. Chen, W. Chen, and S. Shen, '2L-MAC: A MAC protocol with two-layer interference mitigation in wireless body area networks for medical applications,' IEEE International Conference on Communications, 2014. [21] A. Darwish, and A. E. Hassanien, “Wearable and Implantable Wireless Sensor Network Solutions for Healthcare Monitoring,” Sensors, vol. 11, no. 6, pp. 5561-5595, Jun, 2011. [22] PC Magazine, http://www.pcmag.com/article2/0,2817,2470806,00.asp [23] S. Patel, et al, 'A review of wearable sensors and systems with application in rehabilitation,' Journal of neuroengineering and rehabilitation, vol.9 no.1, 2012, pp. 21. [24] X. Lai, et al, 'A survey of body sensor networks,' Sensors, vol.13, no.5, 2013, pp. 5406-5447. [25] 802.15.4 Task Group, http://www.ieee802.org/15/pub/TG4.html [26] M. Patel, and J. Wang, 'Applications, challenges, and prospective in emerging body area networking technologies,' IEEE Wireless Communications, vol.17, no.1, 2010, pp. 80-88. [27] M. Starsinic, 'System architecture challenges in the home M2M network,' Applications and Technology Conference (LISAT), 2010. [28] Freescale, C. Zarader, How ZigBee/802.15.4ProtocolSimplifies Wireless M2M Communications,” http://docbox.etsi.org/Workshop/2008/2008_06_M2MWORKSHOP/FREESCALE_ZARADER_M2MWORKSHOP.pdf [29] The Working Group for 802.11, http://www.ieee802.org/11/ [30] Qualcomm, IEEE 802.11ac: The Next Evolution of Wi-Fi Standards, 2012 [31] Diffen, Bluetooth vs. Wi-Fi, http://www.diffen.com/difference/Bluetooth_vs_Wifi [32] A. Pantelopoulos, and N. Bourbakis, 'A survey on wearable sensor-based systems for health monitoring and prognosis,' IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol.40, no.1, 2010, pp. 1-12. [33] IEEE 802.15.1 Task Group 1, http://www.ieee802.org/15/pub/TG1.html [34] CSR, Bluetooth 4.0: Low Energy, http://chapters.comsoc.org/vancouver/BTLER3.pdf [35] Embedded Expertise, Bluetooth Classic or Bluetooth Smart, http://www.embedded-expertise.com/bluetooth-classic-or-smart/ [36] Foxnews, Experts: Why wearable tech could pose health risks [37] NFC Forum, http://nfc-forum.org/ [38] Wiki, Bluetooth Low Energy, http://en.wikipedia.org/wiki/Bluetooth_low_energy [39] Texus Instruments, Texas Instruments CC2540/41 Bluetooth Low Energy Software Developer’s Guide v1.3.2, http://www.ti.com/lit/ug/swru271f/swru271f.pdf [40] Bluetooth SIG, http://www.bluetooth.com/Pages/about-bluetooth-sig.aspx [41] 3GPP, http://www.3gpp.org [42] Nuviun, Sensors and Wearables, http://nuviun.com/digital-health/sensors-and-wearables [43] Fitbit, About Fitbit Charge HR, http://help.fitbit.com/articles/en_US/Help_article/About-Fitbit-Charge-HR [44] Polar, Polar FS1/FS2c/FS3c™ User Manual, http://www.polar.com/support_files/en/C225742500419A8AC2257007003D1CAA/Polar_FS1_FS2c_FS3c_user_manual_English.pdf [45] Small Animal Cardiology, http://research.vet.upenn.edu/smallanimalcardiology/ECGTutorial/DeterminingHeartRate/tabid/4959/Default.aspx [46] SoundExpert, Bluetooth audio quality – A2DP, http://soundexpert.org/news/-/blogs/bluetooth-audio-quality-a2dp [47] TechTarget, Bandwidth Definition, http://searchenterprisewan.techtarget.com/definition/bandwidth [48] XCSHOP, GoPro HD Helmet HERO Video Camera, http://www.xcshop.com/shop/product.php/302/gopro-hd-helmet-hero-video-camera [49] T.F.M. Hendrixen, UMTS and LTE/SAE handover solutions and their comparison, http://referaat.cs.utwente.nl/conference/11/paper/6984/umts-and-lte-sae-handover-solutions-and-their-comparison.pdf [50] Jakimoski, Kire, and Toni Janevski, 'QoS Challenges of Real Time Traffic during UMTS/WiMAX/WLAN Vertical Handovers,' 18th Telecommunications forum TELFOR, 2010. [51] M. Lacage, M. H. Manshaei, and T. Turletti, 'IEEE 802.11 rate adaptation: a practical approach,' Proceedings of the 7th ACM international symposium on Modeling, analysis and simulation of wireless and mobile systems, 2004. [52] E. H. Ong, et al, 'IEEE 802.11 ac: Enhancements for very high throughput WLANs.' IEEE 22nd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), 2011. [53] Pearson, Network+ Exam Cram: Wireless Networking – 802.11 Wireless Standards, http://www.pearsonitcertification.com/articles/article.aspx?p=1329709 seqNum=4 [54] Wiki, Long Range Wi-Fi, https://en.wikipedia.org/wiki/Long-range_Wi-Fi [55] Wiki, Wi-Fi, https://en.wikipedia.org/?title=Wi-Fi [56] WI-BRIDGE, WI-BRIDGE 150Mbps Wireless N ADSL2+ Modem Router with 5dbi Antenna, http://www.wibridge.in/User%20Guides/ADW40-03_Datasheet.pdf | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19753 | - |
| dc.description.abstract | 近幾年來,由於人們對個人健康照護與運動的重視,越來越多的穿戴式裝置出現在市場上,許多相應的應用也為改變人們的生活而生。然而,當這麼多穿戴式裝置同時被運用時,一個重要的技術課題是如何讓這些裝置即使遭遇不同應用而有不同的記憶體限制、封包與資料傳輸速率,而仍然在現有的短距無線通訊技術下確保所有裝置的封包都能在延遲上限內抵達。
本論文中,我們討論以智慧手持裝置作為所有穿戴式配備連網核心的網路架構。我們希望可以藉由針對穿戴式身軀區域網路下封包週期性抵達的特質,修改既有的輪詢系統分析與設計輪詢的序列來解決相關的服務品質(QoS)問題。我們提出了一個相應於此網路的系統模型並謹慎的進行系統分析,並探討實作此系統的四個主要部分: 通訊型態通訊裝置的硬體實作、藍芽通訊協定在硬體的實現方式、通訊型態通訊裝置的作業系統以及行動裝置上的應用程式實作方法。以上這些觀念、分析、方法和設定在本論文中均予以詳細討論。另外,我們也會呈現每個部分的測試結果。 本論文提出一個名為通用輪詢設計(GPSD)的演算法並簡易的在Android裝置上實作了一個基礎的輪詢模型。通用輪詢設計包含三個主要的部分: 系統檢查、找到所有優質的序列並找出符合需求的候選者以及序列選擇。系統檢查針對裝置的組合檢查了所有的穩定度條件以及其他基本的系統要求。完成這些檢查項目後,手持裝置可以開始尋找所有可能優質序列並確認其中可以符合所有裝置延遲限制之序列。手持裝置再選擇一個對最高優先保護的裝置是有最高延遲保障的序列來確保最需要被保護的裝置不會遺失封包。最後本論文經由模擬分析,驗證同一演算法,在不同情境下與不同演算法的一般設定做比較。由分析結果得知,本論文提出的演算法可以有效的改善使用者體驗並讓使用者可同時的使用更多裝置。並且,此演算法的實作是簡易且可行的。 | zh_TW |
| dc.description.abstract | As demands for personal healthcare and workout training grow, a huge number of wearable devices have come to the market in recent years. Many devices and applications have been designed and developed to change the way people live. Services which didn’t exist in the past seem to be available and are discussed lively. One of the important issue is how to guarantee the delay requirements of devices when they are having different buffer limits, packet size, and data rates, using short range wireless communications. In this thesis, we focus on the network architecture with a smart handheld as center of wearable devices collecting sensing data in a wireless wearable body area network. We aim to solve related QoS problems by refining the polling model under periodic processes and designing a polling sequence for given devices. We propose a system model for the network and made careful analyses on this architecture, including hardware architecture on MTC devices, introduction of Bluetooth protocol stack, operating system on MTC devices and implementation methods on mobile central devices. The concept, analyses, methods and setup in this thesis will be described, and testing results of each component are demonstrated. II We proposed an algorithm called General Polling Sequence Design (GPSD) and implemented a related basic model of it on Android devices. GPSD contains three main parts: System Checking, Finding of Possible Sequences and Candidates, and Sequence Selecting. The System Checking checks the stability condition and other basic system limit for given devices. After this checking, the handheld can start the Finding of Possible Sequences and Candidates and know that whether there is a sequence satisfies all delay requirements for devices. The handheld can then select one sequence with highest delay tolerance for high-priority device among them to make sure its packet will not be dropped. The proposed algorithm, GPSD, was validated and evaluated under several scenarios via simulations. We also compared the results with the default systems. By simulation results, GPDS could improve user experiences and accommodates more devices and services. Moreover, the implementation of it can be easy. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T02:17:10Z (GMT). No. of bitstreams: 1 ntu-104-R02942051-1.pdf: 3061955 bytes, checksum: fec49d349247c1a44bb65c067e48f81c (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員審定書 # 致謝 # 摘要 # ABSTRACT I CONTENTS III LIST OF FIGURES VI LIST OF TABLES VIII Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Related Work 3 1.3 Problem Description 8 1.4 Organization of the Thesis 9 Chapter 2 Network Architecture and System Model 10 2.1 Overview of Related Wearable Wireless Body Area Network 10 2.1.1 Overview of Wearable Body Sensors 10 2.1.2 Overview of Wearable Wireless Body Area Networks 14 2.1.3 Bluetooth Low Energy 20 2.2 The Progress of Related Mobile Broadband Network Service/Public Wi-Fi 22 2.3 The Underlying Network Architecture 25 2.4 System Model 28 2.5 Basic Properties of a General Polling System 30 Chapter 3 Design of General Polling Sequence 33 3.1 Busy Period, Cycle Time and the Worst Message Delay under Poisson Processes 33 3.2 Busy Period, Cycle Time and Worst Message Delays under Periodic Process 42 3.3 The Heuristic Algorithm for Polling Sequence Design 49 3.3.1 Body Area Network Parameters 49 3.3.2 Objective Function 50 3.3.3 The Algorithm of Designing General Polling Sequence 53 Chapter4 Performance Validation via Simulations 63 4.1 Simulation Results 63 4.2 Verification of GPSD Algorithm 71 4.3 Comparisons with Undesigned Polling Sequences 77 4.3.1 Comparison Environment 77 4.3.2 Comparison Results 78 4.4 Gap between Simulation and Measurement Results 89 Chapter5 Implementation Environment 91 5.1 Implementation on MTC Devices 92 5.1.1 Hardware Architecture 92 5.1.2 Bluetooth Protocol Stack 93 5.1.3 Operating System on MTC Devices 95 5.2 Implementation on the Mobile Central Device 96 Chapter6 Conclusions and Future Work 101 6.1 Conclusions 101 6.2 Future Work 102 Appendix 1 104 Appendix 2 107 Appendix 3 109 REFERENCE 110 | |
| dc.language.iso | en | |
| dc.title | 多穿戴式裝置於短距無線傳輸之輪詢設計 | zh_TW |
| dc.title | A General Polling Design for Multiple Wearable Devices Using Short-range Wireless Communications | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 馮輝文,黎明富,林宗男 | |
| dc.subject.keyword | 穿戴式,多裝置,輪詢,身軀區域網路, | zh_TW |
| dc.subject.keyword | wearable device,multiple device,polling,body area network, | en |
| dc.relation.page | 116 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2015-10-12 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 2.99 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
