Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19745
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor詹益慈(Yi-Tsu Chan)
dc.contributor.authorTing-Wei Hsuen
dc.contributor.author許庭瑋zh_TW
dc.date.accessioned2021-06-08T02:16:43Z-
dc.date.copyright2015-12-01
dc.date.issued2015
dc.date.submitted2015-10-19
dc.identifier.citation1. Lehn, J.-M., Angew. Chem. Int. Ed. 1988, 27, 89-112.
2. Lehn, J., Science 1993, 260, 1762-1763.
3. Hofmeier, H.; El-ghayoury, A.; Schenning, A. P. H. J.; Schubert, U. S., Chem. Commun. 2004, 318-319.
4. Kraus, T.; Buděšínský, M.; Cvačka, J.; Sauvage, J.-P., Angew. Chem. Int. Ed. 2006, 45, 258-261.
5. Tominaga, M.; Suzuki, K.; Kawano, M.; Kusukawa, T.; Ozeki, T.; Sakamoto, S.; Yamaguchi, K.; Fujita, M., Angew. Chem. Int. Ed. 2004, 43, 5621-5625.
6. Morgan, G. T.; Burstall, F. H., J. Chem. Soc. 1932, 20-30.
7. Hofmeier, H.; Schubert, U. S., Chem. Soc. Rev. 2004, 33, 373-399.
8. Mahata, K.; Frischmann, P. D.; Würthner, F., J. Am. Chem. Soc. 2013, 135, 15656-15661.
9. Schalley, C. A.; Lützen, A.; Albrecht, M., Chem. Eur. J. 2004, 10, 1072-1080.
10. Riddell, I. A.; Smulders, M. M. J.; Clegg, J. K.; Nitschke, J. R., Chem. Commun. 2011, 47, 457-459.
11. Smulders, M. M. J.; Zarra, S.; Nitschke, J. R., J. Am. Chem. Soc. 2013, 135, 7039-7046.
12. Bolliger, J. L.; Belenguer, A. M.; Nitschke, J. R., Angew. Chem. Int. Ed. 2013, 52, 7958-7962.
13. S?rensen, A.; Castilla, A. M.; Ronson, T. K.; Pittelkow, M.; Nitschke, J. R., Angew. Chem. Int. Ed. 2013, 52, 11273-11277.
14. Takao, K.; Suzuki, K.; Ichijo, T.; Sato, S.; Asakura, H.; Teramura, K.; Kato, K.; Ohba, T.; Morita, T.; Fujita, M., Angew. Chem. Int. Ed. 2012, 51, 5893-5896.
15. Kikuchi, T.; Murase, T.; Sato, S.; Fujita, M., Supramol. Chem. 2008, 20, 81-94.
16. Suzuki, K.; Takao, K.; Sato, S.; Fujita, M., Angew. Chem. Int. Ed. 2011, 50, 4858-4861.
17. Chakrabarty, R.; Mukherjee, P. S.; Stang, P. J., Chem. Rev. 2011, 111, 6810-6918.
18. Schubert, U. S.; Hofmeier, H.; Newkome, G. R., Syntheses of Functionalized 2,2':6',2'-Terpyridines. In Modern Terpyridine Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA: 2006; pp 7-35.
19. Xie, T.-Z.; Liao, S.-Y.; Guo, K.; Lu, X.; Dong, X.; Huang, M.; Moorefield, C. N.; Cheng, S. Z. D.; Liu, X.; Wesdemiotis, C.; Newkome, G. R., J. Am. Chem. Soc. 2014, 136, 8165-8168.
20. Suzuki, K.; Takao, K.; Sato, S.; Fujita, M., J. Am. Chem. Soc. 2010, 132, 2544-2545.
21. Breiner, B.; Nitschke, J. R., Nat. Chem. 2010, 2, 6-7.
22. Zhao, L.; Ghosh, K.; Zheng, Y.-R.; Stang, P. J., J. Org. Chem. 2009, 74, 8516-8521.
23. Suzuki, K.; Kawano, M.; Sato, S.; Fujita, M., J. Am. Chem. Soc. 2007, 129, 10652-10653.
24. Murase, T.; Sato, S.; Fujita, M., Angew. Chem. Int. Ed. 2007, 46, 1083-1085.
25. Sato, S.; Iida, J.; Suzuki, K.; Kawano, M.; Ozeki, T.; Fujita, M., Science 2006, 313, 1273-1276.
26. Tominaga, M.; Suzuki, K.; Murase, T.; Fujita, M., J. Am. Chem. Soc. 2005, 127, 11950-11951.
27. Yang, J.; Bhadbhade, M.; Donald, W. A.; Iranmanesh, H.; Moore, E. G.; Yan, H.; Beves, J. E., Chem. Commun. 2015, 51, 4465-4468.
28. Roberts, D. A.; Pilgrim, B. S.; Cooper, J. D.; Ronson, T. K.; Zarra, S.; Nitschke, J. R., J. Am. Chem. Soc. 2015, 32, 10068-10071.
29. Xu, L.; Chen, L.-J.; Yang, H.-B., Chem. Commun. 2014, 50, 5156-5170.
30. Lewis, J. E. M.; Elliott, A. B. S.; McAdam, C. J.; Gordon, K. C.; Crowley, J. D., Chem. Sci. 2014, 5, 1833-1843.
31. Qing-Fu, S.; Sota, S.; Makoto, F., Nat. Chem. 2012, 4, 330-333.
32. Chakrabarty, R.; Stang, P. J., J. Am. Chem. Soc. 2012, 134, 14738-14741.
33. Wang, M.; Lan, W.-J.; Zheng, Y.-R.; Cook, T. R.; White, H. S.; Stang, P. J., J. Am. Chem. Soc. 2011, 133, 10752-10755.
34. Ghosh, K.; Hu, J.; White, H. S.; Stang, P. J., J. Am. Chem. Soc. 2009, 131, 6695-6697.
35. Yang, H.-B.; Ghosh, K.; Zhao, Y.; Northrop, B. H.; Lyndon, M. M.; Muddiman, D. C.; White, H. S.; Stang, P. J., J. Am. Chem. Soc. 2008, 130, 839-841.
36. Yang, H.-B.; Ghosh, K.; Northrop, B. H.; Zheng, Y.-R.; Lyndon, M. M.; Muddiman, D. C.; Stang, P. J., J. Am. Chem. Soc. 2007, 129, 14187-14189.
37. Jude, H.; Disteldorf, H.; Fischer, S.; Wedge, T.; Hawkridge, A. M.; Arif, A. M.; Hawthorne, M. F.; Muddiman, D. C.; Stang, P. J., J. Am. Chem. Soc. 2005, 127, 12131-12139.
38. Das, N.; Stang, P. J.; Arif, A. M.; Campana, C. F., J. Org. Chem. 2005, 70, 10440-10446.
39. Schröder, T.; Brodbeck, R.; Letzel, M. C.; Mix, A.; Schnatwinkel, B.; Tonigold, M.; Volkmer, D.; Mattay, J., Tetrahedron Lett. 2008, 49, 5939-5942.
40. Jude, H.; Sinclair, D. J.; Das, N.; Sherburn, M. S.; Stang, P. J., J. Org. Chem. 2006, 71, 4155-4163.
41. Huang, F.; Yang, H.-B.; Das, N.; Maran, U.; Arif, A. M.; Gibson, H. W.; Stang, P. J., J. Org. Chem. 2006, 71, 6623-6625.
42. Merlau, M. L.; del Pilar Mejia, M.; Nguyen, S. T.; Hupp, J. T., Angew. Chem. Int. Ed. 2001, 113, 4369-4372.
43. Fujita, N.; Biradha, K.; Fujita, M.; Sakamoto, S.; Yamaguchi, K., Angew. Chem. Int. Ed. 2001, 40, 1718-1721.
44. Fan, J.; Whiteford, J. A.; Olenyuk, B.; Levin, M. D.; Stang, P. J.; Fleischer, E. B., J. Am. Chem. Soc. 1999, 121, 2741-2752.
45. Stang, P. J.; Cao, D. H.; Chen, K.; Gray, G. M.; Muddiman, D. C.; Smith, R. D., J. Am. Chem. Soc. 1997, 119, 5163-5168.
46. Stang, P. J.; Olenyuk, B.; Fan, J.; Arif, A. M., Organometallics 1996, 15, 904-908.
47. Drain, C. M.; Lehn, J.-M., J. Chem. Soc., Chem. Commun. 1994, 2313-2315.
48. Northrop, B. H.; Yang, H.-B.; Stang, P. J., Chem. Commun. 2008, 5896-5908.
49. Chi, K.-W.; Addicott, C.; Stang, P. J., J. Org. Chem. 2004, 69, 2910-2912.
50. Halls, J. J. M.; Pichler, K.; Friend, R. H.; Moratti, S. C.; Holmes, A. B., Appl. Phys. Lett. 1996, 68, 3120-3122.
51. Haugeneder, A.; Neges, M.; Kallinger, C.; Spirkl, W.; Lemmer, U.; Feldmann, J.; Scherf, U.; Harth, E.; Gügel, A.; Müllen, K., Phys. Rev. B: Condens. Matter 1999, 59, 15346-15351.
52. Theander, M.; Yartsev, A.; Zigmantas, D.; Sundström, V.; Mammo, W.; Andersson, M. R.; Inganäs, O., Phys. Rev. B: Condens. Matter 2000, 61, 12957-12963.
53. Stübinger, T.; Brütting, W., J. Appl. Phys. 2001, 90, 3632-3641.
54. Markov, D. E.; Amsterdam, E.; Blom, P. W. M.; Sieval, A. B.; Hummelen, J. C., J. Phys. Chem. A 2005, 109, 5266-5274.
55. Cheng, Y.-J.; Yang, S.-H.; Hsu, C.-S., Chem. Rev. 2009, 109, 5868-5923.
56. Kim, Y.; Cook, S.; Tuladhar, S. M.; Choulis, S. A.; Nelson, J.; Durrant, J. R.; Bradley, D. D. C.; Giles, M.; McCulloch, I.; Ha, C.-S.; Ree, M., Nat. Mater. 2006, 5, 197-203.
57. Koppe, M.; Brabec, C. J.; Heiml, S.; Schausberger, A.; Duffy, W.; Heeney, M.; McCulloch, I., Macromolecules 2009, 42, 4661-4666.
58. Hiorns, R. C.; de Bettignies, R.; Leroy, J.; Bailly, S.; Firon, M.; Sentein, C.; Khoukh, A.; Preud'homme, H.; Dagron-Lartigau, C., Adv. Funct. Mater. 2006, 16, 2263-2273.
59. Hoppe, H.; Glatzel, T.; Niggemann, M.; Hinsch, A.; Lux-Steiner, M. C.; Sariciftci, N. S., Nano Lett. 2005, 5, 269-274.
60. Li, G.; Shrotriya, V.; Huang, J.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y., Nat. Mater. 2005, 4, 864-868.
61. Reyes-Reyes, M.; Kim, K.; Dewald, J.; López-Sandoval, R.; Avadhanula, A.; Curran, S.; Carroll, D. L., Org. Lett. 2005, 7, 5749-5752.
62. Li, G.; Yao, Y.; Yang, H.; Shrotriya, V.; Yang, G.; Yang, Y., Adv. Funct. Mater. 2007, 17, 1636-1644.
63. Nguyen, L. H.; Hoppe, H.; Erb, T.; Günes, S.; Gobsch, G.; Sariciftci, N. S., Adv. Funct. Mater. 2007, 17, 1071-1078.
64. Ayzner, A. L.; Wanger, D. D.; Tassone, C. J.; Tolbert, S. H.; Schwartz, B. J., J. Phys. Chem. C 2008, 112, 18711-18716.
65. Swinnen, A.; Haeldermans, I.; vande Ven, M.; D'Haen, J.; Vanhoyland, G.; Aresu, S.; D'Olieslaeger, M.; Manca, J., Adv. Funct. Mater. 2006, 16, 760-765.
66. Yang, X.; van Duren, J. K. J.; Rispens, M. T.; Hummelen, J. C.; Janssen, R. A. J.; Michels, M. A. J.; Loos, J., Adv. Mater. 2004, 16, 802-806.
67. Yang, X.; van Duren, J. K. J.; Janssen, R. A. J.; Michels, M. A. J.; Loos, J., Macromolecules 2004, 37, 2151-2158.
68. Cheng, Y.-J.; Hsieh, C.-H.; Li, P.-J.; Hsu, C.-S., Adv. Funct. Mater. 2011, 21, 1723-1732.
69. Zhang, Y.; Yip, H.-L.; Acton, O.; Hau, S. K.; Huang, F.; Jen, A. K. Y., Chem. Mater. 2009, 21, 2598-2600.
70. Liao, H.-C.; Tsao, C.-S.; Lin, T.-H.; Jao, M.-H.; Chuang, C.-M.; Chang, S.-Y.; Huang, Y.-C.; Shao, Y.-T.; Chen, C.-Y.; Su, C.-J.; Jeng, U. S.; Chen, Y.-F.; Su, W.-F., ACS Nano 2012, 6, 1657-1666.
71. Bunck, D. N.; Dichtel, W. R., Angew. Chem. Int. Ed. 2012, 51, 1885-1889.
72. Wang, J.-L.; Li, X.; Lu, X.; Hsieh, I. F.; Cao, Y.; Moorefield, C. N.; Wesdemiotis, C.; Cheng, S. Z. D.; Newkome, G. R., J. Am. Chem. Soc. 2011, 133, 11450-11453.
73. Wang, C.; Hao, X.-Q.; Wang, M.; Guo, C.; Xu, B.; Tan, E. N.; Zhang, Y.-Y.; Yu, Y.; Li, Z.-Y.; Yang, H.-B.; Song, M.-P.; Li, X., Chem. Sci. 2014, 5, 1221-1226.
74. Li, X.; Chan, Y.-T.; Casiano-Maldonado, M.; Yu, J.; Carri, G. A.; Newkome, G. R.; Wesdemiotis, C., Anal. Chem. 2011, 83, 6667-6674.
75. Chan, Y.-T.; Li, X.; Soler, M.; Wang, J.-L.; Wesdemiotis, C.; Newkome, G. R., J. Am. Chem. Soc. 2009, 131, 16395-16397.
76. Mesleh, M. F.; Hunter, J. M.; Shvartsburg, A. A.; Schatz, G. C.; Jarrold, M. F., J. Phys. Chem. 1996, 100, 16082-16086.
77. Shvartsburg, A. A.; Jarrold, M. F., Chem. Phys. Lett. 1996, 261, 86-91.
78. Sleno, L.; Volmer, D. A., J. Mass Spectrom. 2004, 39, 1091-1112.
79. Felder, D.; Nierengarten, H.; Gisselbrecht, J.-P.; Boudon, C.; Leize, E.; Nicoud, J.-F.; Gross, M.; Van Dorsselaer, A.; Nierengarten, J.-F., New J. Chem. 2000, 24, 687-695.
80. Li, G.; Chu, C.-W.; Shrotriya, V.; Huang, J.; Yang, Y., Appl. Phys. Lett. 2006, 88, 253503.
81. Krebs, F. C.; Norrman, K., Prog. Photovoltaics Res. Appl. 2007, 15, 697-712.
82. Hau, S. K.; Yip, H.-L.; Baek, N. S.; Zou, J.; O’Malley, K.; Jen, A. K.-Y., Appl. Phys. Lett. 2008, 92, 253301.
83. Hau, S. K.; Yip, H.-L.; Acton, O.; Baek, N. S.; Ma, H.; Jen, A. K. Y., J. Mater. Chem. 2008, 18, 5113-5119.
84. Hau, S. K.; Cheng, Y.-J.; Yip, H.-L.; Zhang, Y.; Ma, H.; Jen, A. K. Y., ACS Appl. Mater. Interfaces 2010, 2, 1892-1902.
85. Hsieh, C.-H.; Cheng, Y.-J.; Li, P.-J.; Chen, C.-H.; Dubosc, M.; Liang, R.-M.; Hsu, C.-S., J. Am. Chem. Soc. 2010, 132, 4887-4893.
86. Chang, C.-Y.; Wu, C.-E.; Chen, S.-Y.; Cui, C.; Cheng, Y.-J.; Hsu, C.-S.; Wang, Y.-L.; Li, Y., Angew. Chem. Int. Ed. 2011, 50, 9386-9390.
87. He, Z.; Zhong, C.; Su, S.; Xu, M.; Wu, H.; Cao, Y., Nat. Photonics 2012, 6, 591-595.
88. Liao, S.-H.; Jhuo, H.-J.; Cheng, Y.-S.; Chen, S.-A., Adv. Mater. 2013, 25, 4766-4771.
89. Liang, W.-W.; Chang, C.-Y.; Lai, Y.-Y.; Cheng, S.-W.; Chang, H.-H.; Lai, Y.-Y.; Cheng, Y.-J.; Wang, C.-L.; Hsu, C.-S., Macromolecules 2013, 46, 4781-4789.
90. Cheng, Y.-J.; Hsieh, C.-H.; He, Y.; Hsu, C.-S.; Li, Y., J. Am. Chem. Soc. 2010, 132, 17381-17383.
91. Tsao, C.-S.; Li, M.; Zhang, Y.; Leao, J. B.; Chiang, W.-S.; Chung, T.-Y.; Tzeng, Y.-R.; Yu, M.-S.; Chen, S.-H., J. Phys. Chem. C 2010, 114, 19895-19900.
92. Tsao, C.-S.; Yu, M.-S.; Chung, T.-Y.; Wu, H.-C.; Wang, C.-Y.; Chang, K.-S.; Chen, H.-L., J. Am. Chem. Soc. 2007, 129, 15997-16004.
93. Tsao, C. S.; Chen, C. Y.; Jeng, U. S.; Kuo, T. Y., Acta Mater. 2006, 54, 4621-4631.
94. Li, Y.-C.; Chen, K.-B.; Chen, H.-L.; Hsu, C.-S.; Tsao, C.-S.; Chen, J.-H.; Chen, S.-A., Langmuir 2006, 22, 11009-11015.
95. Lin, T. L.; Jeng, U.; Tsao, C. S.; Liu, W. J.; Canteenwala, T.; Chiang, L. Y., J. Phys. Chem. B 2004, 108, 14884-14888.
96. Liao, H.-C.; Tsao, C.-S.; Lin, T.-H.; Chuang, C.-M.; Chen, C.-Y.; Jeng, U. S.; Su, C.-H.; Chen, Y.-F.; Su, W.-F., J. Am. Chem. Soc. 2011, 133, 13064-13073.
97. Shelimov, K. B.; Clemmer, D. E.; Hudgins, R. R.; Jarrold, M. F., J. Am. Chem. Soc. 1997, 119, 2240-2248.
98. Valentine, S. J.; Anderson, J. G.; Ellington, A. D.; Clemmer, D. E., J. Phys. Chem. B 1997, 101, 3891-3900.
99. Bush, M. F.; Campuzano, I. D. G.; Robinson, C. V., Anal. Chem. 2012, 84, 7124-7130.
100. Campuzano, I.; Bush, M. F.; Robinson, C. V.; Beaumont, C.; Richardson, K.; Kim, H.; Kim, H. I., Anal. Chem. 2012, 84, 1026-1033.
101. Salbo, R.; Bush, M. F.; Naver, H.; Campuzano, I.; Robinson, C. V.; Pettersson, I.; J?rgensen, T. J. D.; Haselmann, K. F., Rapid Commun. Mass Spectrom. 2012, 26, 1181-1193.
102. Chan, Y.-T.; Li, X.; Yu, J.; Carri, G. A.; Moorefield, C. N.; Newkome, G. R.; Wesdemiotis, C., J. Am. Chem. Soc. 2011, 133, 11967-11976.
103. Gallina, M. E.; Baytekin, B.; Schalley, C.; Ceroni, P., Chem. Eur. J. 2012, 18, 1528-1535.
104. He, Q.; Dai, H.; Tan, X.; Cheng, X.; Liu, F.; Tschierske, C., J. Mater. Chem. C 2013, 1, 7148-7154.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19745-
dc.description.abstract在超分子領域中,許多團隊致力於架構立體的籠狀超分子;現今已有各式各樣的三維高對稱結構被創造及報導。本實驗中,我們成功展示籠狀超分子外修飾的可能性;透過合成一系列帶有不同官能基團的三配向三聯三吡啶配位基並與金屬離子錯合形成立方體的超分子;含有不同基團的立方超分子表現出相異的性質,例如溶解度;透過氫核磁共振、電灑式質譜及電子顯微鏡等技術來鑑定及觀察其自組裝後的結果和行為。除此,我們亦利用連接不同位點的聯三吡啶,形成向內彎曲的三聯三吡啶配位基結構並與金屬離子錯合形成較小的籠狀超分子;藉由連接位點的改變微調配基幾何結構,更多的三維超分子可以簡單地被建構。
現今以噻吩及碳球衍生物為主動層之有機太陽能電池具有穩定性不佳的問題,其中有部分原因為小分子的碳球衍生物隨時間產生大規模聚集進而造成主動層間嚴重的巨觀相分離;因此,我們將富勒烯引入至三配向三聯三吡啶配位基上,透過自組裝形成帶有八個富勒烯的立方超分子,並作為交聯劑降低碳球衍生物在主動層的聚集速度,成功改善有機太陽能電池的穩定性。
zh_TW
dc.description.abstractIn supramolecular chemistry, constructing a well-defined three-dimensional cage has attracted more and more attention. Herein, we explore the possibility of exterior functionalization for the self-assembled cages. A series of tritopic terpyridine-based ligands with various exterior functionalities was used to construct metallo-supramolecular cages. To investigate the self-assembly behavior of the predesigned tritopic ligand system, ligands with simple hydroxyl and alkyl substituents were synthesized and complexed with Cd(II) and Zn(II) ions to give supramolecular cubic cages that were well characterized by 1H-NMR, ESI-MS, and electron microscopes. Besides, changing connected positions between the terpyridine moieties and the central core to generate a bent version of the tritopic ligand was successfully used for constructing a smaller supramolecular structure, demonstrating a simple method to build variant metallo-supramolecular structures.
To date, the polymer solar cells (PSCs) with P3HT and PCBM as an active layer suffer from a severe lifetime problem, which is partly caused by the macrophase separation from the aggregation of PCBM with time. Based on our new findings, the tritopic terpyridine-based ligand decorated with pendant fullerene groups was successfully synthesized and self-assembled into a functional metallocage via coordination. In addition, the fullerene-functionalized cage was used as a supramolecular crosslinker to alleviate the macrophase aggregation caused by the migration of the C60 acceptor, which significantly improved the stability of organic photovoltaics.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:16:43Z (GMT). No. of bitstreams: 1
ntu-104-R02223175-1.pdf: 9730235 bytes, checksum: d047d78aaafe353e6a8cc7df142bd1b4 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontentsChapter 1. Introduction 1
1-1 Supramolecules 1
1-1-1 Pyridine-Based Metal Coordination 2
1-1-2 2,2':6',2'-Terpyridine 4
1-2 Metallosupramolecular Cages 5
1-3 Functionalization of metallosupramolecules 6
1-3-1 Edge- and corner-functionalization 7
1-3-2 Endo-functionalization 7
1-3-3 Exo-functionalization 9
1-4 Polymer solar cells 10
1-5 Motivation and Goals 15
Chapter 2. Metallo-supramolecular cages 17
2-1 Design and synthesis of ligands 17
2-2 Construction of metallo-supramolecular cages 19
2-2-1 L1 and [M12L18] 19
2-2-2 L2 and [M12L28] 21
2-2-3 L3 and [M12L38] 30
2-2-4 L4 and [M3L42] 33
2-3 Summary 40
Chapter 3. Fullerene-functionalized metallo-supramolecular cages 42
3-1 Synthesis and characterization of L5 and CPX5 42
3-2 ZnO modification with L5 47
3-3 Stability improvement by using CPX5 as a supramolecular crosslinker 50
3-4 Characterization of the P3HT:PC61BM:CPX5 blends 52
Chapter 4. Conclusions 59
Chapter 5. Experimental section 61
References 106
dc.language.isoen
dc.title利用官能化三配向三聯三吡啶配位基架構功能性籠狀超分子之研究zh_TW
dc.titleSelf-Assembly of Functional Metallo-Supramolecular Cages Using Tritopic Terpyridine-Based Ligandsen
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree碩士
dc.contributor.oralexamcommittee周必泰(Pi-Tai Chou),童世煌(Shih-Huang Tung)
dc.subject.keyword聯三?啶,籠狀超分子,富勒烯,有機太陽能電池,zh_TW
dc.subject.keywordterpyridine,metallo-supramolecular cage,exo-funtionalization,fullerene,solar cell,en
dc.relation.page113
dc.rights.note未授權
dc.date.accepted2015-10-20
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
Appears in Collections:化學系

Files in This Item:
File SizeFormat 
ntu-104-1.pdf
  Restricted Access
9.5 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved