Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19695
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor潘建源(Chien-Yuen Pan)
dc.contributor.authorJui-Ling Tsaien
dc.contributor.author蔡瑞玲zh_TW
dc.date.accessioned2021-06-08T02:13:54Z-
dc.date.copyright2016-02-19
dc.date.issued2015
dc.date.submitted2015-12-23
dc.identifier.citationReferences
1. Carmeliet, P., and Jain, R.K. (2011). Molecular mechanisms and clinical applications of angiogenesis. Nature 473, 298-307.
2. Cook, K.M., and Figg, W.D. (2010). Angiogenesis inhibitors: current strategies and future prospects. CA: a cancer journal for clinicians 60, 222-243.
3. Folkman, J. (1971). Tumor angiogenesis: therapeutic implications. N Engl J Med 285, 1182-1186.
4. Ferrara, N. (2002). Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis: therapeutic implications. Seminars in oncology 29, 10-14.
5. Toi, M., Kashitani, J., and Tominaga, T. (1993). Tumor angiogenesis is an independent prognostic indicator in primary breast carcinoma. International journal of cancer. Journal international du cancer 55, 371-374.
6. Guidi, A.J., Fischer, L., Harris, J.R., and Schnitt, S.J. (1994). Microvessel density and distribution in ductal carcinoma in situ of the breast. Journal of the National Cancer Institute 86, 614-619.
7. Allen, E., Walters, I.B., and Hanahan, D. (2011). Brivanib, a dual FGF/VEGF inhibitor, is active both first and second line against mouse pancreatic neuroendocrine tumors developing adaptive/evasive resistance to VEGF inhibition. Clinical cancer research : an official journal of the American Association for Cancer Research 17, 5299-5310.
8. Brugarolas, J.B., Vazquez, F., Reddy, A., Sellers, W.R., and Kaelin, W.G., Jr. (2003). TSC2 regulates VEGF through mTOR-dependent and -independent pathways. Cancer cell 4, 147-158.
9. Hudson, C.C., Liu, M., Chiang, G.G., Otterness, D.M., Loomis, D.C., Kaper, F., Giaccia, A.J., and Abraham, R.T. (2002). Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol Cell Biol 22, 7004-7014.
10. Guo, Y., Wang, S., Hoot, D.R., and Clinton, S.K. (2007). Suppression of VEGF-mediated autocrine and paracrine interactions between prostate cancer cells and vascular endothelial cells by soy isoflavones. J Nutr Biochem 18, 408-417.
11. Bergers, G., and Hanahan, D. (2008). Modes of resistance to anti-angiogenic therapy. Nature reviews. Cancer 8, 592-603.
12. Ferrara, N., and Kerbel, R.S. (2005). Angiogenesis as a therapeutic target. Nature 438, 967-974.
13. Holash, J., Davis, S., Papadopoulos, N., Croll, S.D., Ho, L., Russell, M., Boland, P., Leidich, R., Hylton, D., Burova, E., et al. (2002). VEGF-Trap: a VEGF blocker with potent antitumor effects. Proceedings of the National Academy of Sciences of the United States of America 99, 11393-11398.
14. Kieran, M.W., Kalluri, R., and Cho, Y.J. (2012). The VEGF pathway in cancer and disease: responses, resistance, and the path forward. Cold Spring Harbor perspectives in medicine 2, a006593.
15. Ferrara, N., Hillan, K.J., Gerber, H.P., and Novotny, W. (2004). Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 3, 391-400.
16. Joseph, S.O., Wu, J., and Muggia, F.M. (2012). Targeted therapy: its status and promise in selected solid tumors. Part II: Impact on selected tumor subsets, and areas of evolving integration. Oncology 26, 1021-1030, 1035.
17. Ferrara, N. (2004). Vascular endothelial growth factor: basic science and clinical progress. Endocrine reviews 25, 581-611.
18. Wood, J.M., Bold, G., Buchdunger, E., Cozens, R., Ferrari, S., Frei, J., Hofmann, F., Mestan, J., Mett, H., O'Reilly, T., et al. (2000). PTK787/ZK 222584, a novel and potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, impairs vascular endothelial growth factor-induced responses and tumor growth after oral administration. Cancer research 60, 2178-2189.
19. Smith, J.K., Mamoon, N.M., and Duhe, R.J. (2004). Emerging roles of targeted small molecule protein-tyrosine kinase inhibitors in cancer therapy. Oncology research 14, 175-225.
20. Safran, M., and Kaelin, W.G., Jr. (2003). HIF hydroxylation and the mammalian oxygen-sensing pathway. The Journal of clinical investigation 111, 779-783.
21. Minchenko, A., Bauer, T., Salceda, S., and Caro, J. (1994). Hypoxic stimulation of vascular endothelial growth factor expression in vitro and in vivo. Laboratory investigation; a journal of technical methods and pathology 71, 374-379.
22. Shima, D.T., Adamis, A.P., Ferrara, N., Yeo, K.T., Yeo, T.K., Allende, R., Folkman, J., and D'Amore, P.A. (1995). Hypoxic induction of endothelial cell growth factors in retinal cells: identification and characterization of vascular endothelial growth factor (VEGF) as the mitogen. Molecular medicine 1, 182-193.
23. Shweiki, D., Itin, A., Soffer, D., and Keshet, E. (1992). Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359, 843-845.
24. Banai, S., Jaklitsch, M.T., Shou, M., Lazarous, D.F., Scheinowitz, M., Biro, S., Epstein, S.E., and Unger, E.F. (1994). Angiogenic-induced enhancement of collateral blood flow to ischemic myocardium by vascular endothelial growth factor in dogs. Circulation 89, 2183-2189.
25. Hida, K., Akiyama, K., Ohga, N., Maishi, N., and Hida, Y. (2013). Tumour endothelial cells acquire drug resistance in a tumour microenvironment. Journal of biochemistry 153, 243-249.
26. Paez-Ribes, M., Allen, E., Hudock, J., Takeda, T., Okuyama, H., Vinals, F., Inoue, M., Bergers, G., Hanahan, D., and Casanovas, O. (2009). Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer cell 15, 220-231.
27. Ebos, J.M., Lee, C.R., Cruz-Munoz, W., Bjarnason, G.A., Christensen, J.G., and Kerbel, R.S. (2009). Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15, 232-239.
28. Rapisarda, A., and Melillo, G. (2012). Overcoming disappointing results with antiangiogenic therapy by targeting hypoxia. Nat Rev Clin Oncol 9, 378-390.
29. Bottsford-Miller, J.N., Coleman, R.L., and Sood, A.K. (2012). Resistance and escape from antiangiogenesis therapy: clinical implications and future strategies. J Clin Oncol 30, 4026-4034.
30. Sennino, B., and McDonald, D.M. (2012). Controlling escape from angiogenesis inhibitors. Nat Rev Cancer 12, 699-709.
31. Kim, Y.J., Lee, H.J., Kim, T.M., Eisinger-Mathason, T.S., Zhang, A.Y., Schmidt, B., Karl, D.L., Nakazawa, M.S., Park, P.J., Simon, M.C., et al. (2013). Overcoming evasive resistance from vascular endothelial growth factor a inhibition in sarcomas by genetic or pharmacologic targeting of hypoxia-inducible factor 1alpha. International journal of cancer. Journal international du cancer 132, 29-41.
32. Chung, A.S., Wu, X., Zhuang, G., Ngu, H., Kasman, I., Zhang, J., Vernes, J.M., Jiang, Z., Meng, Y.G., Peale, F.V., et al. (2013). An interleukin-17-mediated paracrine network promotes tumor resistance to anti-angiogenic therapy. Nat Med 19, 1114-1123.
33. Jain, R.K. (2014). Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer cell 26, 605-622.
34. Houck, K.A., Leung, D.W., Rowland, A.M., Winer, J., and Ferrara, N. (1992). Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. The Journal of biological chemistry 267, 26031-26037.
35. Tseng, F.J., Chen, Y.C., Lin, Y.L., Tsai, N.M., Lee, R.P., Chung, Y.S., Chen, C.H., Liu, Y.K., Huang, Y.S., Hwang, C.H., et al. (2010). A fusion protein with the receptor-binding domain of vascular endothelial growth factor-A (VEGF-A) is an antagonist of angiogenesis in cancer treatment: Simultaneous blocking of VEGF receptor-1 and 2. Cancer Biol Ther 10, 865-873.
36. Jain, R.K. (2005). Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307, 58-62.
37. Birkenhager, R., Schneppe, B., Rockl, W., Wilting, J., Weich, H.A., and McCarthy, J.E. (1996). Synthesis and physiological activity of heterodimers comprising different splice forms of vascular endothelial growth factor and placenta growth factor. The Biochemical journal 316 ( Pt 3), 703-707.
38. Tsai, Y.P., and Wu, K.J. (2012). Hypoxia-regulated target genes implicated in tumor metastasis. Journal of biomedical science 19, 102.
39. Gupta, T., Nair, N., Fuke, P., Bedre, G., Basu, S., and Shrivastava, S.K. (2006). Splenic metastases from cervical carcinoma: a case report. International journal of gynecological cancer : official journal of the International Gynecological Cancer Society 16, 911-914.
40. Lu, X., and Kang, Y. (2010). Hypoxia and hypoxia-inducible factors: master regulators of metastasis. Clinical cancer research : an official journal of the American Association for Cancer Research 16, 5928-5935.
41. Bertout, J.A., Patel, S.A., and Simon, M.C. (2008). The impact of O2 availability on human cancer. Nature reviews. Cancer 8, 967-975.
42. Semenza, G.L. (2012). Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends in pharmacological sciences 33, 207-214.
43. Tischer, E., Gospodarowicz, D., Mitchell, R., Silva, M., Schilling, J., Lau, K., Crisp, T., Fiddes, J.C., and Abraham, J.A. (1989). Vascular endothelial growth factor: a new member of the platelet-derived growth factor gene family. Biochemical and biophysical research communications 165, 1198-1206.
44. Keck, P.J., Hauser, S.D., Krivi, G., Sanzo, K., Warren, T., Feder, J., and Connolly, D.T. (1989). Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science 246, 1309-1312.
45. Senger, D.R., Galli, S.J., Dvorak, A.M., Perruzzi, C.A., Harvey, V.S., and Dvorak, H.F. (1983). Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219, 983-985.
46. Ferrara, N., Houck, K., Jakeman, L., and Leung, D.W. (1992). Molecular and biological properties of the vascular endothelial growth factor family of proteins. Endocrine reviews 13, 18-32.
47. Tischer, E., Mitchell, R., Hartman, T., Silva, M., Gospodarowicz, D., Fiddes, J.C., and Abraham, J.A. (1991). The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. The Journal of biological chemistry 266, 11947-11954.
48. Ladomery, M.R., Harper, S.J., and Bates, D.O. (2007). Alternative splicing in angiogenesis: the vascular endothelial growth factor paradigm. Cancer letters 249, 133-142.
49. Muller, Y.A., Christinger, H.W., Keyt, B.A., and de Vos, A.M. (1997). The crystal structure of vascular endothelial growth factor (VEGF) refined to 1.93 A resolution: multiple copy flexibility and receptor binding. Structure 5, 1325-1338.
50. Wiesmann, C., Fuh, G., Christinger, H.W., Eigenbrot, C., Wells, J.A., and de Vos, A.M. (1997). Crystal structure at 1.7 A resolution of VEGF in complex with domain 2 of the Flt-1 receptor. Cell 91, 695-704.
51. Keyt, B.A., Berleau, L.T., Nguyen, H.V., Chen, H., Heinsohn, H., Vandlen, R., and Ferrara, N. (1996). The carboxyl-terminal domain (111-165) of vascular endothelial growth factor is critical for its mitogenic potency. The Journal of biological chemistry 271, 7788-7795.
52. Poltorak, Z., Cohen, T., Sivan, R., Kandelis, Y., Spira, G., Vlodavsky, I., Keshet, E., and Neufeld, G. (1997). VEGF145, a secreted vascular endothelial growth factor isoform that binds to extracellular matrix. The Journal of biological chemistry 272, 7151-7158.
53. Park, J.E., Keller, G.A., and Ferrara, N. (1993). The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Molecular biology of the cell 4, 1317-1326.
54. Rifkin, D.B., Moscatelli, D., Bizik, J., Quarto, N., Blei, F., Dennis, P., Flaumenhaft, R., and Mignatti, P. (1990). Growth factor control of extracellular proteolysis. Cell differentiation and development : the official journal of the International Society of Developmental Biologists 32, 313-318.
55. Gerber, H.P., McMurtrey, A., Kowalski, J., Yan, M., Keyt, B.A., Dixit, V., and Ferrara, N. (1998). Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3'-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. The Journal of biological chemistry 273, 30336-30343.
56. Memmott, R.M., and Dennis, P.A. (2009). Akt-dependent and -independent mechanisms of mTOR regulation in cancer. Cellular signalling 21, 656-664.
57. Fulda, S., and Debatin, K.M. (2007). HIF-1-regulated glucose metabolism: a key to apoptosis resistance? Cell cycle 6, 790-792.
58. Belaiba, R.S., Bonello, S., Zahringer, C., Schmidt, S., Hess, J., Kietzmann, T., and Gorlach, A. (2007). Hypoxia up-regulates hypoxia-inducible factor-1alpha transcription by involving phosphatidylinositol 3-kinase and nuclear factor kappaB in pulmonary artery smooth muscle cells. Molecular biology of the cell 18, 4691-4697.
59. Ardyanto, T.D., Osaki, M., Tokuyasu, N., Nagahama, Y., and Ito, H. (2006). CoCl2-induced HIF-1alpha expression correlates with proliferation and apoptosis in MKN-1 cells: a possible role for the PI3K/Akt pathway. International journal of oncology 29, 549-555.
60. Dekanty, A., Lavista-Llanos, S., Irisarri, M., Oldham, S., and Wappner, P. (2005). The insulin-PI3K/TOR pathway induces a HIF-dependent transcriptional response in Drosophila by promoting nuclear localization of HIF-alpha/Sima. Journal of cell science 118, 5431-5441.
61. Zhou, J., Schmid, T., Frank, R., and Brune, B. (2004). PI3K/Akt is required for heat shock proteins to protect hypoxia-inducible factor 1alpha from pVHL-independent degradation. The Journal of biological chemistry 279, 13506-13513.
62. Engelman, J.A. (2009). Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nature reviews. Cancer 9, 550-562.
63. Fulda, S. (2009). The PI3K/Akt/mTOR pathway as therapeutic target in neuroblastoma. Current cancer drug targets 9, 729-737.
64. Gedaly, R., Angulo, P., Chen, C., Creasy, K.T., Spear, B.T., Hundley, J., Daily, M.F., Shah, M., and Evers, B.M. (2012). The role of PI3K/mTOR inhibition in combination with sorafenib in hepatocellular carcinoma treatment. Anticancer research 32, 2531-2536.
65. Shafee, N., Kaluz, S., Ru, N., and Stanbridge, E.J. (2009). PI3K/Akt activity has variable cell-specific effects on expression of HIF target genes, CA9 and VEGF, in human cancer cell lines. Cancer letters 282, 109-115.
66. Mottet, D., Dumont, V., Deccache, Y., Demazy, C., Ninane, N., Raes, M., and Michiels, C. (2003). Regulation of hypoxia-inducible factor-1alpha protein level during hypoxic conditions by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3beta pathway in HepG2 cells. The Journal of biological chemistry 278, 31277-31285.
67. Zhong, H., Chiles, K., Feldser, D., Laughner, E., Hanrahan, C., Georgescu, M.M., Simons, J.W., and Semenza, G.L. (2000). Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer research 60, 1541-1545.
68. Fokas, E., Yoshimura, M., Prevo, R., Higgins, G., Hackl, W., Maira, S.M., Bernhard, E.J., McKenna, W.G., and Muschel, R.J. (2012). NVP-BEZ235 and NVP-BGT226, dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitors, enhance tumor and endothelial cell radiosensitivity. Radiation oncology 7, 48.
69. Qayum, N., Muschel, R.J., Im, J.H., Balathasan, L., Koch, C.J., Patel, S., McKenna, W.G., and Bernhard, E.J. (2009). Tumor vascular changes mediated by inhibition of oncogenic signaling. Cancer research 69, 6347-6354.
70. Xue, L., Chiang, L., Kang, C., and Winoto, A. (2008). The role of the PI3K-AKT kinase pathway in T-cell development beyond the beta checkpoint. European journal of immunology 38, 3200-3207.
71. Overgaard, J. (2007). Hypoxic radiosensitization: adored and ignored. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 25, 4066-4074.
72. Nordsmark, M., Overgaard, M., and Overgaard, J. (1996). Pretreatment oxygenation predicts radiation response in advanced squamous cell carcinoma of the head and neck. Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology 41, 31-39.
73. Gray, L.H., Conger, A.D., Ebert, M., Hornsey, S., and Scott, O.C. (1953). The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. The British journal of radiology 26, 638-648.
74. McMahon, G. (2000). VEGF receptor signaling in tumor angiogenesis. The oncologist 5 Suppl 1, 3-10.
75. Hu, C.M., Aryal, S., and Zhang, L. (2010). Nanoparticle-assisted combination therapies for effective cancer treatment. Ther Deliv 1, 323-334.
76. Robinson, C.J., and Stringer, S.E. (2001). The splice variants of vascular endothelial growth factor (VEGF) and their receptors. J Cell Sci 114, 853-865.
77. Jayson, G.C., Zweit, J., Jackson, A., Mulatero, C., Julyan, P., Ranson, M., Broughton, L., Wagstaff, J., Hakannson, L., Groenewegen, G., et al. (2002). Molecular imaging and biological evaluation of HuMV833 anti-VEGF antibody: implications for trial design of antiangiogenic antibodies. J Natl Cancer Inst 94, 1484-1493.
78. Park, M.S., Kim, B.R., Dong, S.M., Lee, S.H., Kim, D.Y., and Rho, S.B. (2014). The antihypertension drug doxazosin inhibits tumor growth and angiogenesis by decreasing VEGFR-2/Akt/mTOR signaling and VEGF and HIF-1alpha expression. Oncotarget 5, 4935-4944.
79. Wang, H.M., Cheng, K.C., Lin, C.J., Hsu, S.W., Fang, W.C., Hsu, T.F., Chiu, C.C., Chang, H.W., Hsu, C.H., and Lee, A.Y. (2010). Obtusilactone A and (-)-sesamin induce apoptosis in human lung cancer cells by inhibiting mitochondrial Lon protease and activating DNA damage checkpoints. Cancer Sci 101, 2612-2620.
80. Cheng, C.W., Kuo, C.Y., Fan, C.C., Fang, W.C., Jiang, S.S., Lo, Y.K., Wang, T.Y., Kao, M.C., and Lee, A.Y. (2013). Overexpression of Lon contributes to survival and aggressive phenotype of cancer cells through mitochondrial complex I-mediated generation of reactive oxygen species. Cell death & disease 4, e681.
81. Zhou, Q., Kiosses, W.B., Liu, J., and Schimmel, P. (2008). Tumor endothelial cell tube formation model for determining anti-angiogenic activity of a tRNA synthetase cytokine. Methods 44, 190-195.
82. Mesange, P., Poindessous, V., Sabbah, M., Escargueil, A.E., de Gramont, A., and Larsen, A.K. (2014). Intrinsic bevacizumab resistance is associated with prolonged activation of autocrine VEGF signaling and hypoxia tolerance in colorectal cancer cells and can be overcome by nintedanib, a small molecule angiokinase inhibitor. Oncotarget 5, 4709-4721.
83. Fukuda, R., Zhang, H., Kim, J.W., Shimoda, L., Dang, C.V., and Semenza, G.L. (2007). HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 129, 111-122.
84. Mazure, N.M., Chen, E.Y., Laderoute, K.R., and Giaccia, A.J. (1997). Induction of vascular endothelial growth factor by hypoxia is modulated by a phosphatidylinositol 3-kinase/Akt signaling pathway in Ha-ras-transformed cells through a hypoxia inducible factor-1 transcriptional element. Blood 90, 3322-3331.
85. Karar, J., and Maity, A. (2011). PI3K/AKT/mTOR Pathway in Angiogenesis. Frontiers in molecular neuroscience 4, 51.
86. Cebe Suarez, S., Pieren, M., Cariolato, L., Arn, S., Hoffmann, U., Bogucki, A., Manlius, C., Wood, J., and Ballmer-Hofer, K. (2006). A VEGF-A splice variant defective for heparan sulfate and neuropilin-1 binding shows attenuated signaling through VEGFR-2. Cellular and molecular life sciences : CMLS 63, 2067-2077.
87. Jakobsson, L., Kreuger, J., Holmborn, K., Lundin, L., Eriksson, I., Kjellen, L., and Claesson-Welsh, L. (2006). Heparan sulfate in trans potentiates VEGFR-mediated angiogenesis. Developmental cell 10, 625-634.
88. Tvorogov, D., Anisimov, A., Zheng, W., Leppanen, V.M., Tammela, T., Laurinavicius, S., Holnthoner, W., Helotera, H., Holopainen, T., Jeltsch, M., et al. (2010). Effective suppression of vascular network formation by combination of antibodies blocking VEGFR ligand binding and receptor dimerization. Cancer cell 18, 630-640.
89. Chatterjee, S., Heukamp, L.C., Siobal, M., Schottle, J., Wieczorek, C., Peifer, M., Frasca, D., Koker, M., Konig, K., Meder, L., et al. (2013). Tumor VEGF:VEGFR2 autocrine feed-forward loop triggers angiogenesis in lung cancer. J Clin Invest 123, 1732-1740.
90. Ferrara, N. (2000). Vascular endothelial growth factor and the regulation of angiogenesis. Recent progress in hormone research 55, 15-35; discussion 35-16.
91. Partin, J.V., Anglin, I.E., and Kyprianou, N. (2003). Quinazoline-based alpha 1-adrenoceptor antagonists induce prostate cancer cell apoptosis via TGF-beta signalling and I kappa B alpha induction. British journal of cancer 88, 1615-1621.
92. Keledjian, K., Garrison, J.B., and Kyprianou, N. (2005). Doxazosin inhibits human vascular endothelial cell adhesion, migration, and invasion. Journal of cellular biochemistry 94, 374-388.
93. Jiang, B.H., and Liu, L.Z. (2008). AKT signaling in regulating angiogenesis. Current cancer drug targets 8, 19-26.
94. Tahmatzopoulos, A., Rowland, R.G., and Kyprianou, N. (2004). The role of alpha-blockers in the management of prostate cancer. Expert opinion on pharmacotherapy 5, 1279-1285.
95. Vivanco, I., and Sawyers, C.L. (2002). The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nature reviews. Cancer 2, 489-501.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19695-
dc.description.abstract抗血管新生治療是現今癌症治療的方法之一,很遺憾的是,針對抗VEGF-A的抗血管新生療法,則出現抗藥性且增加癌症轉移等問題。抗藥性來自腫瘤內無血管供應氧氣造成嚴重「缺氧」,癌細胞為求生存,本身會分泌VEGF-A,不斷地回饋刺激VEGFR2-HIF-1α-VEGF路徑,形成自泌回饋環(autocrine loop),讓癌細胞儘快逃離目前惡劣的環境因而造成轉移。為了獲得更有效的癌症治療藥物及降低藥物抗藥性,我們在六種VEGF-A異構物 (isoform)中,測試挑選出缺乏Heparin binding domain的VEGF121及VEGF165的兩個單體(monomer)為基本單元,透過連接一段人類抗體IgG1的Fc固定區,利用多胜肽鏈連接的方式,建構出VEGF121-VEGF165二聚蛋白嵌合體。連接Fc區域不僅可增強二聚體的結合、增強蛋白嵌合體的穩定度、還可增強免疫細胞的活性。我們試圖以拮抗弱化的理論,用VEGF121-VEGF165來競爭取代,分別由自泌 (autocrine)及旁泌(paracrine)兩大方面來抑制,弱化下游的訊號傳遞,以避免癌細胞中心出現嚴重缺氧的情況。由in vitro及in vivo實驗證實,VEGF121-VEGF165可競爭VEGF165二聚體,使VEGF165旁泌和自泌的現象降低,且使得在內皮細胞或是癌細胞的增殖、遷移、侵襲或形成管狀結構的能力也大幅度的下降。機制方面,嵌合蛋白質會拮抗癌細胞所產生抗藥性的路徑: 透過
PI3K-AKT-mTOR途徑來抑制HIF-1α-VEGF165/Lon。總結,VEGF121-VEGF165,它透過競爭VEGFR2接受體,調控細胞內訊號傳導訊息來降低細胞外過量的VEGF-A。因此VEGF121-VEGF165不僅能阻斷內皮細胞進行血管新生外,亦能解決癌細胞的HIF-1α-Lon過度表現產生抗藥性的問題,這將是一個具有發展潛力的拮抗血管生成之癌症治療蛋白質藥物,有機會成為癌症病人的一道新曙光。
zh_TW
dc.description.abstractAnti-angiogenesis therapy is one major approach of cancer therapies nowadays. Unfortunately, anti-angiogenesis therapy targeting VEGF-A was recently stumbled by the drug-resistance that results from adaptive responses. Accumulating study suggested that intratumor hypoxia has a critical role in many adaptive mechanisms. To obtain a more efficient therapeutic response and attenuate the drug-resistance, we created and identified a novel chimeric fusion of VEGF121 and VEGF165, which was connected by Fc region of human IgG1 to enhance dimerization. We found that the treatment of VEGF121-VEGF165 chimeric protein reduces proliferation, migration, invasion, and tube formation of endothelial and/or cancer cells through competing VEGF165 homodimer in a paracrine and an autocrine manner. Furthermore, the fusion protein attenuated autocrine VEGFR2-HIF-1α-VEGF165/Lon signaling through PI3K-AKT-mTOR pathway in cancer cells. In conclusion, our data demonstrated that the chimeric VEGF121-VEGF165 arrests the tube formation of endothelial cells and interferes with tumor cell growth, migration and invasion, suggesting that it could be a potential drug as an angiogenesis antagonist in cancer therapy. The VEGF121-VEGF165 targets not only paracrine angiogenic cascade of endothelial cells but also autocrine PI3K-AKT-mTOR mediated VEGFR2-HIF-1α-VEGF165/Lon signaling that drives drug resistance in tumor cells. Our study will open up the patient opportunities to combat drug resistance to antiangiogenic therapy.en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:13:54Z (GMT). No. of bitstreams: 1
ntu-104-D97B41008-1.pdf: 2190487 bytes, checksum: f0d4c4e4fac6436ac6b13b569e291798 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontentsTable of contents
中文摘要………..…..…………………………………………….……..….….4
English abstract………………………………………………….………..……5
List of Abbreviation….…………………………………………….…….….…7
1.Introduction
1.1 Angiogenesis and tumor microenvironment………………….…………..8
1.2 Many different types of targeted therapies are used to treat cancer…........8
1.3 Hypoxia, Drug resistance and metastasis
1.3.1 Hypoxia……………………………………………………………...11
1.3.2 Drug resistance………………………………………………………12
1.3.2.1 Extrinsic resistance…………………………………………….12
1.3.2.2 Intrinsic resistance……………………………………………..12
1.3.3 Metastasis……………………………………………………………..14
1.4 The Vascular endothelial growth factor (VEGF) isoforms……………......15
1.5 Targeting PI3K/AKT/mTOR signaling in cancer represses HIF-1αactivation
…………………………………………………………………………………18
1.6 Motivation…………………………………………………………………20
2. Materials and Methods
2.1 Gene construction of pcDNA3.1-VEGF121-VEGF165……..…………...22
2.2 Cell lines and cell cultures………………………………………….….22
2.3 Purification of VEGF121-VEGF165 recombinant proteins……….…..22
2.4 Cell proliferation assay….………………………………………….….23
2.5 Colony formation assay…………………………………………….….23
2.6 Cell migration assay…………………………………………………....24
2.7 Tube formation assay……………………………………………….…24
2.8 Cell invasion assay…………………………………………………….25
2.9 Immunoblotting………………………………………………….…….26
2.10 Statistical methods…………………………………………………....27
3 Results
3.1 Constrcuction and characterization of VEGF121-VEGF165 fusion protein
…………………………………………………………………….…...…28
3.2 VEGF121-VEGF165 chimeric protein inhibits cell proliferation induced by VEGF165………………………………….………………………..….....29
3.3 VEGF121-VEGF165 chimeric protein inhibits tube formation induced by VEGF165………………………………………………………………...30
3.4 VEGF121-VEGF165 chimeric protein inhibits cell migration……………31
3.5 VEGF121-VEGF165 chimeric protein impairs tumor invasion………......31
3.6 VEGF121-VEGF165 chimeric protein attenuated autocrine VEGFR2-HIF-1α
-VEGF165/ Lon signaling through PI3K-AKT-mTOR pathway…..…....32
4 Discussion
4.1 Anti-angiogenic therapy and hypoxic tumor microenvironment….…..34
4.2 VEGF121 and VEGF165 functions in endothelial cells…….……….…..34
4.3 Attenuated functions of VEGF121-VEGF165: enhancing the value and
effectiveness……………………………………………………...…....36
4.4 Inhibition of both paracrine and autocrine VEGF/VEGFR2 signaling pathways…………………………………………………….….…......37
5 Conclusion………………………………….………………………...….…...40
Figures and Tables…………………………………………………….....…..…41
References…………………………………………………………….......….... 66
dc.language.isoen
dc.title新穎蛋白嵌合體VEGF121-VEGF165調控腫瘤血管新生及缺氧誘導因子訊號路徑之機制研究zh_TW
dc.titleThe novel VEGF121-VEGF165 fusion attenuates angiogenesis and drug resistance via targeting VEGFR2-HIF-1α-VEGF165/Lon signaling through PI3K-AKT-mTOR pathwayen
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree博士
dc.contributor.coadvisor李岳倫(Alan Yueh-Luen Lee)
dc.contributor.oralexamcommittee鄭添祿(Tian-Lu Cheng),廖光文(Kuang-Wen Liao),李玉梅(Yu-May Lee)
dc.subject.keyword抗血管新生,抗藥性,缺氧,Lon,融合嵌合體,二聚體 VEGF121-VEGF165,zh_TW
dc.subject.keywordAnti-angiogenesis,drug resistance,hypoxia,Lon,the chimeric fusion,VEGF121-VEGF165,en
dc.relation.page74
dc.rights.note未授權
dc.date.accepted2015-12-23
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生命科學系zh_TW
顯示於系所單位:生命科學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
2.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved