請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19686
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳右人 | |
dc.contributor.author | Li-Chiao Lo | en |
dc.contributor.author | 羅利巧 | zh_TW |
dc.date.accessioned | 2021-06-08T02:13:23Z | - |
dc.date.copyright | 2016-02-15 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-12-30 | |
dc.identifier.citation | 甘子能. 1984. 茶葉化學入門. 台灣省茶業改良場 桃園.
吳白玟、劉曉芸、鄭郁琪、曾素香、蘇淑珠、闕麗卿. 2011. 液相層析法分析茶飲料中兒茶素. 食品藥物研究年報 2 : 90-96. 李雙伶、郭俊淩、杜曉. 2009. 茶樹紫色芽葉中花青素的提取-層析分離及初步鑒定. 安徽農業科學 28:13799-13802. 阮逸明、張如華、張連發. 1989. 不同烘焙溫度與時間對包種茶化學成分與品質之影響. 臺灣茶業研究彙報 8:71-82. 林書妍. 2013. 部分發酵茶茶菁、製作及成茶中可溶性化學成分與揮發性有機化合物之研究. 臺大園藝暨景觀學系博士論文. 台北. 姚永宏、柴友榮、李中林、吳全、侯渝嘉、徐澤、蔡倫紅、周正科、鄔秀紅、鄧敏. 2009. 降低茶葉咖啡鹼的研究進展. 西南農業學報22(6):1799-1802. 范嘉琦. 2010. 烘焙方法對茶葉中咖啡因含量之影響. 國立台灣大學園藝學系碩士論文. 台北. 張如華、阮逸明、蔡永生. 1995. 茶葉主要化學成分於製茶過程中之變化及其對品質之影響. 農特產品加工研討會專刊 56:120-148. 行政院農業委員會農業試驗所. 臺中. 許勇泉、尹軍峰、袁海波、陳建新、汪芳. 2008. 茶葉脫咖啡因技術研究進展. 茶葉科學28(1):1-8. 陳英玲. 1989. 茶多元酚氧化酶之研究(一). 臺灣茶業研究彙報 8: 83-90. 陳國任、吳聲舜. 2000. 東部茶區季節性製茶品質特徵及技術改良. 臺灣茶業研究彙報 19:115-124. 陳國任、陳俊良. 2004. 不同攪拌次數對白毫烏龍茶感官品評與水色色差值之影響. 臺灣茶業研究彙報 23: 107-113. 楊美珠、劉銘純、黃謄鋒、陳國任、陳右人. 2012. 低咖啡因茶葉製造技術研究. 第一屆茶葉科技研討會專刊 茶業改良場 p261-282. 趙卉、杜曉. 2008. 減壓昇華脫除綠茶中的咖啡鹼. 四川農業大學學報 26(1):53-58. 劉仲華、黃孝原、施兆鵬. 1900. 紅茶和烏龍茶色素與乾茶色澤的關係. 茶葉科學10:59-64. 蔡永生、區少梅、張如華. 1991. 包種茶茶湯水色I. 包種茶茶湯水色與酚類化物之關係. 臺灣茶業研究彙報10:65-75. 蔡永生、區少梅、張如華. 1991. 包種茶茶湯水色II. 包種茶茶湯水色與酚類化物之關係. 臺灣茶業研究彙報10:77-87. 蔡永生、劉士綸、王雪芳、區少梅. 2004. 台灣主要栽培茶樹品種兒茶素含量與抗氧化活性之比較. 臺灣茶業研究彙報 23: 115-132. 談駿嵩. 2002. 超臨界流體的應用. 科學發展 359:12-17. 鄭貽文. 2008. 不同茶樹品種(系)與採製方式對茶葉兒茶素、咖啡因含量與抗氧化能力之影響. 中興大學園藝學系碩士論文. 賴正南(編). 2001. 茶葉技術推廣手冊-製茶技術.行政院農委會茶業改良場, 桃園. 戴前穎、夏濤、高麗萍、李釗、吳平. 2011. 綠茶湯呈色物質研究進展. 安徽農業大學學報38: 887-891. Berkowitz, J.E., P. Coggon, and G.W. Sanderson. 1971. Formation of epitheaflavic acid and its transformation to thearubigins during tea fermentation. Phytochemistry 10:2271-2278. Cabrera, C., R. Artacho, and R. Gime´nez. 2006. Beneficial effects of green tea-a review. J. Amer. Coll. Nutr. 25:79-99 Ferrara, L., D. Montesano, and A. Senatore. 2001. The distribution of minerals and flavonoids in the tea plant (Camellia sinensis). Il Farmaco 56: 397-401 Gokulakrishnan, S., K. Chandraraj, and S.N. Gummadi. 2005. Microbial and enzymatic methods for the removal of caffeine. Enzyme Microbial Technol. 37:225–232. Graham, H. N. 1992. Green tea composition, consumption, and polyphenol chemistry. Prev. Med. 21: 334-350. Hulbert, G.J., R.N. Biswal, C.B. Mehr, T.H. Walker, and J.L. Collins. 1998. Solid/liquid extraction of caffeine from guarana with methylene chloride. Food Sci. Technol. Int. 4: 53. Joshi, R., G.D.K. Babu, and A. Gulati. 2013. Effect of decaffeination conditions on quality parameters of Kangra orthodox black tea. Food Res. Int. 53:693–703. Jun, X. 2009. Caffeine extraction from green tea leaves assisted by high pressure processing. J. Food Eng. 94:105-109. Kim, Y., K.L. Goodner, J.D. Park, J. Choi, and S.T. Talcott. 2011. Changes in antioxidant phytochemicals and volatile composition of Camellia sinensis by oxidation during tea fermentation. Food Chem. 129:1331-1342. Koshiishia, C., A. Katoa, S. Yamab, A. Crozierc, and H. Ashihara. 2001. A new caffeine biosynthetic pathway in tea leaves: utilisation of adenosine released from the S-adenosyl-L-methionine cycle. FEBS Lett. 499:50-54. Kumar, R.S.S., N.N. Muraleedharan, S. Murugesan, G. Kottur, M.P. Anand, and A. Nishadh. 2011. Biochemical quality characteristics of CTC black teas of south India and their relation to organoleptic evaluation. Food Chem. 129:117-124. Liang, H., Y. Liang, J. Dong, J. Lu, H. Xu, and H. Wang. 2007. Decaffeination of fresh green tea leaf (Camellia sinensis) by hot water treatment. Food Chem. 101:1451-1456. Lin, J.K., C.L. Lin, Y.C. Liang, S.Y. Lin-Shiau, and I.M. Juan. 1998. Survey of catechins, gallic acid, and methylxanthines in green, oolong, pu-erh, and black teas. J. Agric. Food Chem. 46:3635-3642. Mander, L. and H.W.B. Liu. 2010. Chemistry of tea, p. 999-1023. In: U.H. Engelhardt (ed). In comprehensive natural products II. Elsevier Science, Amsterdam. Natesan, S. and V. Ranganathan. 1990. Content of various elements in different parts of the tea plant and in infusions of black tea from southern India. J. Sci. Food Agri. 51: 125-139. Nishitani, E. and Y.M. Sagesaka. 2004. Simultaneous determination of catechins, caffeine and other phenolicc ompounds in tea using new HPLC method. J. Food Comp. Anal. 17: 675-685 Obanda, M., P.O. Owuor, R. Mang’oka, and M.M. Kavoi. 2004. Changes in thearubigin fractions and theaflavin levels due to variations in processing conditions and their influence on black tea liquor brightness and total colour. Food Chem. 85:163-173. Park, H.S., N.G. Im, and K.H. Kim. 2012. Extraction behaviors of caffeine and chlorophylls in supercritical decaffeination of green tea leaves. Food Sci. Technol. 45:73-78. Peterson, J., J. Dwyer, S. Bhagwat, D. Haytowitz, J. Holden, A.L. Eldridge, G. Beecher, and J. Aladesanmi. 2005. Major flavonoids in dry tea. J. Food Comp. Anal. 18:487-501. Ramalakshmi, K. and B. Raghavan. 1999. Caffeine in coffee: Its removal. Why and how? Food Sci. Nutr. 39:441-456. Stagga, G.V. and D.J. Millinb. 1915. The nutritional and therapeutic value of tea - a review. J. Sci. Food Agri. 26: 1439-1459. Stensvold, I., A. Tverdal, and K. Solvoll. 1992. Tea consumption. Relationship to cholesterol, blood pressure, and coronary and total mortality. Prev. Med. 21:546-553. Subramanian, N., P. Venkatesh, S. Ganguli, and V.P. Sinkar. 1999. Role of polyphenol oxidase and peroxidase in the generation of black tea theaflavins. J. Agric. Food Chem. 47:2571-2578. Takino, Y., A. Ferretti, V. Flanagan, M. Gianturco, and M. Vogel. 1965. The structure of theaflavin, a polyphenol of black tea. Tetrahedron Lett. 45:4019-4025. Takino, Y., H. Imagawa, H. Horikawa, and A. Tanaka. 1964. Studies on the mechanism of the oxidation of tea leaf catechins. Part III. Formation of a reddish orange pigment and its spectral relationship to some benzotropolone derivatives. Agric. Biol. Chem. 28:64-71. Tanaka, T., C. Mine, S. Watarumi, T. Fujioka, K. Mihashi, Y.J. Zhang, and I. Kouno, 2002. Accumulation of epigallocatechin quinone dimers during tea fermentation and formation of theasinensins. J. Natl. Prod. 65:1582-1587. Waller, G.R., H. Ashihara, M. Kato, T.W. Baumann, A. Crozier, and T. Suzuki. 2000. Pathways involved in the metabolism of caffeine by Coffea and Camellia plants. J. Amer. Chem. Soc. 9-17. Wang, H. and K. Helliwell. 2000. Epimerisation of catechins in green tea infusions. Food Chem. 70:337-344. Wang, K., F. Liu, Z. Liu, J.Huang, Z. Xu, Y. Li, J. Chen, Y. Gong, and X. Yang. 2010. Analysis of chemical components in oolong tea in relation to perceived quality. Intl. J. Food Sci. Technol. 45:913-920. Wang, L.F., S.C. Park, J.O. Chung, J.H. Baik, and S.K. Park. 2004. The compounds contributing to the greenness of green tea. J. Food Sci. 69:301-305. Wu, J.J., M.T. Chiang, Y.W. Chang, J.Y. Chen, H.T. Yang, C.K. Lii, J.H. Lin, and H.T. Yao. 2011. Correlation of major components and radical scavenging activity of commercial tea drinks in Taiwan. J. Food Drug Anal. 19:289-300. Zhen, Y.S. 2002. The chemistry of tea non-volatiles, p. 57-88. In: Z.M. Chen, H.F. Wang, X.Q. You, and N. Xu (eds.). Tea: Bioactivity and therapeutic potential. Taylor & Francis, London. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19686 | - |
dc.description.abstract | 本研究分兩個部分,以探討茶湯水色與兒茶素類含量間之關聯,並建立利用茶湯水色快速推估茶湯中兒茶素類含量的方法。第一部分為瞭解茶湯水色與兒茶素類含量之影響,分別比較春、秋兩季製程之茶葉後,顯示茶湯水色色差值(∆E)與茶葉中含量較高的兒茶素catechin (C) (R= -0.72, -0.62)、epicatechin-3-gallate (ECG) (R= -0.64, -0.92)、epigallocatechin (EGC) (R= -0.77, -0.92) 及epigallocatechin-3-gallate (EGCG) (R=-0.73, -0.89)相關性較高。隨發酵程度的增加,總兒茶素的含量降低,使茶湯水色改變。在茶湯水色中EGC、EGCG和C為主要影響茶湯L、a、b值的兒茶素成分;進一步正向逐步迴歸分析,可利用方程式EGC = (-0.60) L + (-1.19) a+ 0.79 b + (-0.87) ∆E +55.52;C = (-0.98) L + (-2.80) a +85.46;EGCG = (-5.87) L+ (-11.13) a+487.1推估這三種兒茶素的含量。第二部分是探討不同發酵程度的綠茶、包種茶、番庄茶和紅茶,製程中兒茶素含量的變化,以及製程中兒茶素含量與水色之關係。使用‘臺茶12號’及‘青心大冇’為材料。其中,‘臺茶12號’為例,而茶素類在製程中持續變動,尤其以製作包種茶及番庄茶時,兒茶素類含量會呈現波動變化,而綠茶及紅茶兒茶素變動則相對較小。分析製程中,茶粉水萃液水色與兒茶素類含量之關係,顯示輕發酵包種茶、重發酵番庄茶和全發酵紅茶,兒茶素含量與水萃液水色有高度相關。在輕發酵包種茶的製程中,‘青心大冇’之水萃液b值與兒茶素C、EGC、EGCG、GCG含量顯著相關 (R2依序為0.64, 0.72, 0.69, 0.44, p < 0.01),而‘臺茶12號’之水萃液b值與 EC、EGC、EGCG含量顯著相關 (R2依序為 0.41, 0.61, 0.52, p < 0.01)。重發酵番庄茶的製程中,‘青心大冇’之水萃液b值與製程中 C、EC、EGC、EGCG含量具有顯著相關(R2依序為0.79, 0.71, 0.66, 0.79, p < 0.01);‘臺茶12號’的水萃液L、a、b值則與EC、EGC、EGCG、GCG、ECG、CG皆有顯著相關(p < 0.01),顯著影響茶粉水萃液的顏色。‘青心大冇’紅茶製程中,水萃液的b值與C、EGC、EGCG、ECG含量具有高度相關(R2依序 0.61, 0.76, 0.92, 0.77, p < 0.01);‘臺茶12號’紅茶製程水萃液L、a、b值則與EC、EGC、EGCG皆有顯著相關(p < 0.01)。‘臺茶12號’及‘青心大冇’之製程樣品水萃液的水色與不同兒茶素異構物的含量相關性不同,顯示有品種差異。由本研究的結果,可初步由茶湯水色或水萃液之L、a、b值,可推估茶葉內較大量兒茶素類物質之含量。 | zh_TW |
dc.description.abstract | This research is focused on differences caused by oxidation of catechin in color of tea infusion. The relationship of color of tea infusion and catechin content was discussed with two segments of experiment, and we tried to establish a method estimating catechin in tea infusion fast via the color of tea infusion. The first part is to realize the effect of seasons to the relationship between color of tea infusion and catechin level. In a comparison of tea made in spring and autumn, higher correlation was found in ∆E of color of tea infusion with high level of catechin (C) (R=-0.72, -0.62), epicatechin-3-gallate (ECG) (R=-0.64, -0.92), and epigallocatechin (EGC) (R=-0.77, -0.92). As fermentation level increased, a decrement was found in total catechin content, and the color of tea infusion changed. The main catechin isomers that affected the value of L, a,and b were EC, EGC, EGCG and C. Through forward stepwise regression analysis, we can estimate the content of EGC, EGCG, and C by using following formulas: EGC = (-0.60) L + (1.19) a+ 0.79 b + (-0.87) ∆E +55.52, C = (-0.98) L + (-2.80) a +85.46, EGCG = (-5.87) L+ (-11.13) a+487.1. In the second part, we observed the variation of catechin content in the making prosess of tea with different level of fermentation, such as green tea, pouching tea, oolong tea, and black tea. In the experiment, we used ‘TTES No.12’ and ‘Chin-Shin Dah Pan’ as the raw material for tea making. In ‘TTES No.12’, the catechin content varied dramatically in tea making process, especially in pouchung tea andoolong tea , while slightly in green tea and black tea. When analyzing the relationship between color of water extract, from powder of tea which collected in each tea making process, and catechin content, we found catechin content and color of tea powder infusion was highly related in low-fermentation-level pouchung tea, high-fermentation-level oolong tea , and full-fermentation-level black tea. In the process of making low-fermentation-level pouchung tea, the value of b, measured from the color of water extract, significantly correlated with catechin content of C, EGC, and EGCE, GCG (R2= 0.64, 0.72, 0.69, and 0.44. p < 0.01), when using ‘Chin-Shin Dah Pan’. While using ‘TTES No.12’, the value of b was significantly correlated to catechin content of EC, EGC, and EGCE (R2= 0.41, 0.61, and 0.52. p < 0.01). As for making high-fermentation-level oolong tea , the value of b when using ‘Chin-Shin Dah Pan’ was significant correlated to the content of C, EC, EGC, and EGCG (R2 = 0.61, 0.76, 0.92, and 0.77. p < 0.01) in the process of making tea. While, the value of L, a, and b, measured from water extracts of ‘TTES No.12’, all related to EC, EGC, EGCG, GCG, EGC, and CG (p < 0.01). The value of b, measured from black tea water extracts of each making process using ‘Chin-Shin Dah Pan ’, correlated highly with the content of C, EGC, EGCG, and ECG(R= -0.78, -0.87, -0.95,-0.88, p < 0.01). For ‘TTES No.12’ in black tea making process, measured from water extracts, the value of L, a,and b all significantly related with EC, EGC, and EGCG(p < 0.01). In brief, for both ‘TTES No.12’ and ‘Chin-Shin Dah Pan ’,the color of water extracts from each process sampling separately correlated with contents of different catechin isomers, revealing differences within cultivars. According to the results, measurement of L, a, and b from color of tea infusion or water extracts can be used to estimate the contents of major catachin isomers. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T02:13:23Z (GMT). No. of bitstreams: 1 ntu-104-R02628132-1.pdf: 777825 bytes, checksum: f1d96491526f7cee52368a081c2a4802 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 摘要 ii
Abrast iv 表目錄 - 4 - 圖目錄 - 6 - 附錄目錄 - 6 - 第一章 前言 1 第二章 文獻回顧 3 一、茶湯內容物 3 (一)、非酚類物質 3 (二)、多元酚類物質 6 (三)、揮發性香氣成分 (volatile organic compounds) 8 二、茶葉分類與製作 8 三、茶湯水色 10 四、影響茶湯水色因子 10 第三章 材料與方法 14 一、試驗材料 14 二、試驗流程與設計 16 三、分析 18 四、資料分析 22 第四章 結果與討論 23 一、 成茶茶湯水色與兒茶素間之關係 23 (一) 秋茶茶湯水色與兒茶素間之關係 23 (二) 春茶茶湯水色與兒茶素間之關係 25 (三) 以色差儀推估茶湯中內容物之含量 27 (四) 小結 28 二、茶葉製程中茶湯水色與兒茶素間之關係 28 (一) 綠茶 28 (二) 包種茶 29 (三) 番庄茶 32 (四) 紅茶 36 (五) 小結 39 第五章 結論 40 表 41 參考文獻 70 附錄 75 | |
dc.language.iso | zh-TW | |
dc.title | 茶湯水色與茶湯內容物含量之關係 | zh_TW |
dc.title | Relationship between the Color of Tea Infusion and Chemical Compound Content | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 石正中,阮素芬 | |
dc.subject.keyword | 茶湯水色,兒茶素,茶葉發酵, | zh_TW |
dc.subject.keyword | the color of tea infusion,catechins,fermentation, | en |
dc.relation.page | 76 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2015-12-31 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 園藝暨景觀學系 | zh_TW |
顯示於系所單位: | 園藝暨景觀學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 759.59 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。