請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19681完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周呈霙(Cheng-Ying Chou) | |
| dc.contributor.author | Yueh Hsu | en |
| dc.contributor.author | 許悅 | zh_TW |
| dc.date.accessioned | 2021-06-08T02:13:07Z | - |
| dc.date.copyright | 2016-02-15 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2016-01-07 | |
| dc.identifier.citation | Andreo, P.. 1991. Monte Carlo techniques in medical radiation physics. Physics in medicine and biology. 36(7): 861.
Beck, A. and M. Teboulle. 2009. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. Image Processing, IEEE Transactions on 18(11): 2419-2434. Bioucas-Dias, J. M. and M. A. Figueiredo. 2007. A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration. Image Processing, IEEE Transactions on 16(12): 2992-3004. Boyd, S., N. Parikh, E. Chu, B. Peleato and J. Eckstein. 2011. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends® in Machine Learning. 3(1): 1-122. Branco, S., S. Jan and P. Almeida. 2007. Monte Carlo simulations in small animal PET imaging. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 580(2): 1127-1130. Chambolle. A.. 2004. An algorithm for total variation minimization and applications. Mathematical imaging and vision. 20(1-2): 89-97. Chou, C.-Y., Y. Dong, Y. Hung, Y.-J. Kao, W. Wang, C.-M. Kao and C.-T. Chen. 2012. Accelerating Image Reconstruction in Dual-Head PET System by GPU and Symmetry Properties. PloS one. 7(12): e50540. Chou, H.-Y., C.-Y. Tsai, C.-M. Kao, C.-T. Chen and C.-Y. Chou. 2012. Time-of-flight image reconstruction with TV minimization constraint for a dual-head small animal PET system. Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). 3443-3446. Conti, M.. 2009. State of the art and challenges of time-of-flight PET. Physica Medica. 25(1): 1-11. Defrise, M., A. Rezaei and J. Nuyts. 2012. Time-of-flight PET data determine the attenuation sinogram up to a constant. Physics in medicine and biology. 57(4): 885. Dong, Y.. 2009. A high-sensitivity dual-head panel small-animal positron emission tomography. Illinois Institute of Technology. Gundacker, S., E. Auffray, B. Frisch, P. Jarron, A. Knapitsch, T. Meyer, M. Pizzichemi and P. Lecoq. 2013. Time of flight positron emission tomography towards 100ps resolution with L (Y) SO: an experimental and theoretical analysis. Instrumentation. 8(07): P07014. Hudson, H. M. and R. S. Larkin. 1994. Accelerated image reconstruction using ordered subsets of projection data. Medical Imaging, IEEE Transactions on 13(4): 601-609. Kao, C.-M., Q. Xie, Y. Dong, L. Wan and C.-T. Chen. 2009. A high-sensitivity small-animal PET scanner: development and initial performance measurements. Nuclear Science, IEEE Transactions on 56(5): 2678-2688. Karp, J. S., S. Surti, M. E. Daube-Witherspoon and G. Muehllehner. 2008. Benefit of time-of-flight in PET: experimental and clinical results. Nuclear Medicine. 49(3): 462-470. Kinahan, P. E., D. W. Townsend, T. Beyer and D. Sashin. 1998. Attenuation correction for a combined 3D PET/CT scanner. Medical Physics. 25(10): 2046-2053. Lecomte, R.. 2004. Technology challenges in small animal PET imaging. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 527(1): 157-165. Lewellen, T. K.. 2008. Recent developments in PET detector technology. Physics in medicine and biology. 53(17): R287. Mazoyer, B., R. Trebossen, C. Schoukroun, B. Verrey, A. Syrota, J. Vacher, P. Lemasson, O. Monnet, A. Bouvier and J. Lecomte. 1990. Physical characteristics of TTV03, a new high spatial resolution time-of-flight positron tomograph. Nuclear Science, IEEE Transactions on 37(2): 778-782. Miller, P. W., N. J. Long, R. Vilar and A. D. Gee. 2008. Synthesis of 11C, 18F, 15O, and 13N radiolabels for positron emission tomography. Angewandte Chemie International Edition. 47(47): 8998-9033. Moses, W.. 2003. Time of flight in PET revisited. Nuclear Science, IEEE Transactions on 50(5): 1325-1330. Mumcuoğlu, E. Ü., R. Leahy, S. R. Cherry and Z. Zhou. 1994. Fast gradient-based methods for Bayesian reconstruction of transmission and emission PET images. Medical Imaging, IEEE Transactions on 13(4): 687-701. Pelizzari, C. A., G. T. Chen, D. R. Spelbring, R. R. Weichselbaum and C.-T. Chen. 1989. Accurate three-dimensional registration of CT, PET, and/or MR images of the brain. Computer assisted tomography. 13(1): 20-26. Peng, H. and C. S. Levin. 2010. Recent developments in PET instrumentation. Current pharmaceutical biotechnology. 11(6): 555. Perry, J. R., W. H. McCartney and J. Berg. 1989. Correction of nonuniform attenuation in cardiac SPECT imaging. Nuclear medicine. 30(4): 497. Persson, M., D. Bone and H. Elmqvist. 2001. Total variation norm for three-dimensional iterative reconstruction in limited view angle tomography. Physics in Medicine and Biology. 46(3): 853. Prekeges, J.. 2012. Nuclear medicine instrumentation. Jones & Bartlett Publishers. Raeside, D.. 1976. Monte Carlo principles and applications. Physics in medicine and biology. 21(2): 181-197. Rezaei, A., M. Defrise, G. Bal, C. Michel, M. Conti, C. Watson and J. Nuyts. 2012. Simultaneous reconstruction of activity and attenuation in time-of-flight PET. Medical Imaging, IEEE Transactions on 31(12): 2224-2233. Rudin, L. I., S. Osher and E. Fatemi. 1992. Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena. 60(1): 259-268. Seifert, S. and D. R. Schaart. 2015. Improving the Time Resolution of TOF-PET Detectors by Double-Sided Readout. Nuclear Science, IEEE Transactions on 62(1): 3-11. Shepp, L. A. and Y. Vardi. 1982. Maximum likelihood reconstruction for emission tomography. Medical Imaging, IEEE Transactions on 1(2): 113-122. Siddon, R. L.. 1985. Fast calculation of the exact radiological path for a three‐dimensional CT array. Medical physics. 12(2): 252-255. Sidky, E. Y., C.-M. Kao and X. Pan. 2009. Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT. arXiv preprint arXiv. 0904.4495. Sidky, E. Y. and X. Pan. 2008. Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Physics in medicine and biology. 53(17): 4777. Silva, S. E. d. O. B.. 2010. Small animal PET imaging using GATE Monte Carlo simulations: Implementation of physiological and metabolic information. Tai, Y.-C. and R. Laforest. 2005. Instrumentation aspects of animal PET. Annu. Rev. Biomed. Eng. 7: 255-285. Ter-Pogossian, M., N. A. Mullani, D. C. Ficke, J. Markham and D. L. Snyder. 1981. Photon time-of-flight-assisted positron emission tomography. Computer assisted tomography. 5(2): 227-239. Vaughan, D.. 1997. A vital legacy: Biological and environmental research in the atomic age. Lawrence Berkeley National Lab., CA (United States). Velikina, J., S. Leng and G.-H. Chen. 2007. Limited view angle tomographic image reconstruction via total variation minimization. Medical Imaging, International Society for Optics and Photonics. 651020-651020. Yang, J., W. Yin, Y. Zhang and Y. Wang. 2009. A fast algorithm for edge-preserving variational multichannel image restoration. SIAM Journal on Imaging Sciences. 2(2): 569-592. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19681 | - |
| dc.description.abstract | 正子斷層掃描目前已經是一個成熟的醫療診斷技術,另一方面由於藥物的開發需要先做小動物實驗,因此本研究使用雙平板小動物系統。此系統有高靈敏的感測以及方便調整平板的特性,但是此系統也有資料遺失的問題。由於飛行時間法的提出,搭配飛行時間法的正子斷層掃描系統已經大幅改善重建影像的品質。另一方面為了解決衰減校正的問題,目前常見的為搭配電腦斷層掃描或核磁共振造影去得到衰減影像。不過這幾年,已經有團隊提出maximum likelihood activity and attenuation estimation (MLAA),此方法僅使用飛行時間正子斷層掃描系統即可同時估算正子分部影像以及衰減影像,有效降低診斷所需的時間。
而本次研究我們使用了考慮時間飛行法的系統矩陣,並提出使用交替方向乘子法(alternating-direction method of multipliers estimation),目的是希望藉由交替方向乘子法基於全變差方法的概念改善雙平板系統資料遺失的問題。另一方面我們也改善MLAA的演算法使其搭配全變差的演算法,由於兩方法都有使用全變差,這讓我們的比較更為公平。最後根據重建影像分析,我們可以得知MLAA搭配全變差演算法以及交替方向乘子法都必須迭代15次才會收斂,而交替方向乘子法重建正子分布影像以及衰減影像的百分誤差分別為59%和34%;另外MLAA搭配全變差的正子分布影像以及衰減影像的百分誤差分別為67%和42%。 | zh_TW |
| dc.description.abstract | Positron emission tomography (PET) is a mature technique of medical diagnosis. If we want to develop the tracer for PET, we should do animal experiment first. It is the reason why we utilized the dual-head small-animal positron emission tomography (DHAPET) system. DHAPET has characteristics of high detection sensitivity and flexible system configurations. However, the system geometry may result in severe parallax errors and undetected events along the trans-axial direction, thus reducing the image quality. With the advancement of detector hardware, time-of-flight (TOF) of photons can be detected, which has been demonstrated to significantly improve image quality, and can greatly benefit its use in research studies and clinics. On the other hand, the conventional attenuation correction requires performing additional transmission scan, which represents more radiation dose. To reconstruct activity distribution and attenuation coefficient simultaneously, the maximum likelihood activity and attenuation estimation (MLAA) was proposed.
In this work, we numerically computed the DHAPET system response matrix that includes TOF information and employed the alternating-direction method of multipliers estimation (ADMM) based on total variation (TV)-minimization. By applying the ADMM, the reconstructed images can be anticipated to have improved quality with better spatial resolution. On the other hand, we combined the MLAA with TV for improving the MLAA. Then we compared the ADMM with MLAA-TV, they are convergence after 15 iteration, and the normalized error of activity and attenuation in ADMM are 59% and 34%, and the normalized error of activity and attenuation in MLAA-TV are about 67% and 42%. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T02:13:07Z (GMT). No. of bitstreams: 1 ntu-104-R02631037-1.pdf: 1830401 bytes, checksum: 487de8b91c042fd4ae9cf94a68b01466 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | TABLE OF CONTENTS
致謝 …………………………………………………………………………………..i 摘要 ………………………………………………………………………………….ii Abstract …………………………………………………………………………………iii TABLE OF CONTENTS v LIST OF FIGURES viii LIST OF TABLES x CHAPTER 1 1 INTRODUCTION 1 1.1 Background 1 1.2 Purpose 3 1.3 Frameworks 5 CHAPTER 2 6 2.1 PET 6 2.1.1 Positron emission tomography 6 2.1.2 Time-of-flight PET system 7 2.1.3 Dual-head flat-panel small animal PET system 10 2.2 Simulation and reconstruction algorithms 11 2.2.1 Monte Carlo simulation 11 2.2.2 Numerical methods for PET image reconstruction 12 2.2.3 Voxel-based ray-tracing simulation 13 2.2.4 Optimization algorithm 15 2.2.5 Total variation minimization algorithm 16 2.3 Attenuation 18 2.3.1 PET/CT 18 2.3.2 TOF-PET 19 CHAPTER 3 22 3.1 Simulation flowchart 22 3.2 Experiment architecture 23 3.2.1 System configuration 23 3.2.2 Simulation device 24 3.3 Research methods 24 3.3.1 System property and system response matrix 24 3.3.2 Ray-tracing simulation of TOF-based system matrix 26 3.3.3 Total variation algorithm 30 3.3.4 Fast iterative shrinkage-thresholding algorithm 31 3.3.5 Alternating-direction method of multipliers estimation 34 CHAPTER 4 36 4.1 Simulation data 36 4.2 The performance of MLAA/ADMM 37 4.2.1 Convergence rate 37 4.2.2 Image quality on different plane along x-axis 41 CHAPTER 5 45 5.1 Research summary 45 5.2 Future work 46 Reference 47 | |
| dc.language.iso | en | |
| dc.title | 飛行時間法之正子斷層掃描系統衰減暨正子影像之同步估算 | zh_TW |
| dc.title | Estimation of Attenuation and Activity Images in Time-of-flight Flat-Panel Positron Emission Tomography System | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蕭穎聰(Ying-Tsung Hsiao),許靖涵(Ching-Han Hsu) | |
| dc.subject.keyword | 正子斷層掃描,衰減影像,飛行時間法,全變差, | zh_TW |
| dc.subject.keyword | PET,attenuation,TOF,total variation (TV),ADMM, | en |
| dc.relation.page | 51 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2016-01-07 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 1.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
