Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19668
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐善慧(Shan-hui Hsu)
dc.contributor.authorHsin-Hua Linen
dc.contributor.author林欣樺zh_TW
dc.date.accessioned2021-06-08T02:12:24Z-
dc.date.copyright2016-02-24
dc.date.issued2016
dc.date.submitted2016-01-18
dc.identifier.citation[1] Bak D. Rapid prototyping or rapid production 3D printing processes move industry towards the latter. Assembly Autom. 2003;23:340-5.
[2] Lipson H, Kurman M. Fabricated: The new world of 3D printing: John Wiley & Sons 2013.
[3] Schubert C, van Langeveld MC, Donoso LA. Innovations in 3D printing: A 3D overview from optics to organs. Br. J. Ophthalmol. 2013;98;159-161.
[4] Giordano RA, Wu BM, Borland SW, Cima LG, Sachs EM, Cima MJ. Mechanical properties of dense polylactic acid structures fabricated by three dimensional printing. J. Biomater. Sci. Polym. Ed. 1997;8:63-75.
[5] Serra T, Planell JA, Navarro M. High-resolution PLA-based composite scaffolds via 3-D printing technology. Acta Biomater. 2013;9:5521-30.
[6] Wischke C, Schwendeman SP. Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. Int. J. Pharm. 2008;364:298-327.
[7] Boland T, Xu T, Damon B, Cui X. Application of inkjet printing to tissue engineering. Biotechnol. J. 2006;1:910-7.
[8] Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR. Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol. 2003;21:157-61.
[9] Kolesky DB, Truby RL, Gladman A, Busbee TA, Homan KA, Lewis JA. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv. Mater. 2014;26:3124-30.
[10] Xu T, Zhao W, Zhu J-M, Albanna MZ, Yoo JJ, Atala A. Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials 2013;34:130-9.
[11] Hong S, Sycks D, Chan HF, Lin S, Lopez GP, Guilak F, et al. 3D Printing of Highly Stretchable and Tough Hydrogels into Complex, Cellularized Structures. Adv. Mater. 2015;27:4035-40.
[12] Peppas N, Bures P, Leobandung W, Ichikawa H. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. and Biopharm. 2000;50:27-46.
[13] Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 2003;24:4337-51.
[14] Klouda L, Mikos AG. Thermoresponsive hydrogels in biomedical applications. Eur. J. Pharm. and Biopharm. 2008;68:34-45.
[15] Wichterle O, Lim D. Hydrophilic gels for biological use. Nature 1960;185:117-118.
[16] Wust S, Godla ME, Muller R, Hofmann S. Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting. Acta Biomater. 2014;10:630-40.
[17] Xu M, Wang X, Yan Y, Yao R, Ge Y. An cell-assembly derived physiological 3D model of the metabolic syndrome, based on adipose-derived stromal cells and a gelatin/alginate/fibrinogen matrix. Biomaterials 2010;31:3868-77.
[18] Ramanan RMK, Chellamuthu P, Tang L, Nguyen KT. Development of a temperature‐sensitive composite hydrogel for drug delivery applications. Biotechnol. Prog. 2006;22:118-25.
[19] Lee S, Kim B. High solid and high stability waterborne polyurethanes via ionic groups in soft segments and chain termini. J. Colloid Interface Sci. 2009;336:208-14.
[20] Noble K-L. Waterborne polyurethanes. Prog. Org. Coat. 1997;32:131-6.
[21] Perez-Liminana MA, Aran-Ais F, Torro-Palau AM, Orgiles-Barcelo AC, Martin-Martinez JM. Characterization of waterborne polyurethane adhesives containing different amounts of ionic groups. Int. J. Adhes. Adhes. 2005;25:507-17.
[22] Grad S, Kupcsik L, Gorna K, Gogolewski S, Alini M. The use of biodegradable polyurethane scaffolds for cartilage tissue engineering: potential and limitations. Biomaterials 2003;24:5163-71.
[23] Gunatillake PA, Adhikari R. Biodegradable synthetic polymers for tissue engineering. Eur. Cell. Mater. 2003;5:1-16.
[24] Huang Y, He K, Wang X. Rapid prototyping of a hybrid hierarchical polyurethane-cell/hydrogel construct for regenerative medicine. Mater. Sci. and Eng. C. 2013;33:3220-9.
[25] Fromstein JD, Woodhouse KA. Elastomeric biodegradable polyurethane blends for soft tissue applications. J. Biomater. Sci. Polym. Ed. 2002;13:391-406.
[26] Ou C-W, Su C-H, Jeng U-S, Hsu S-h. Characterization of biodegradable polyurethane nanoparticles and thermally induced self-assembly in water dispersion. ACS Appl. Mater. Interfaces. 2014;6:5685-94.
[27] Hsu S-h, Hung K-C, Lin Y-Y, Su C-H, Yeh H-Y, Jeng U-S, et al. Water-based synthesis and processing of novel biodegradable elastomers for medical applications. J. Mater. Chem. B 2014;2:5083-92.
[28] Kline SR. Reduction and analysis of SANS and USANS data using IGOR. Pro. J. Appl. Crystallogr. 2006;39:895-900.
[29] Riese DO, Wegdam GH, Vos WL, Sprik R, Fenistein D, Bongaerts JH, et al. Effective screening of hydrodynamic interactions in charged colloidal suspensions. Phys. Rev. Lett. 2000;85:5460.
[30] Dautzenberg H. Polyelectrolyte complex formation in highly aggregating systems. 1. Effect of salt: polyelectrolyte complex formation in the presence of NaCl. Macromolecules 1997;30:7810-5.
[31] Hung K-C, Jeng U-S, Hsu S-h. Fractal Structure of Hydrogels Modulates Stem Cell Behavior. ACS Macro Lett. 2015;4:1056-61.
[32] Christenson H, Claesson P, Berg J, Herder P. Forces between fluorocarbon surfactant monolayers: Salt effects on the hydrophobic interaction. J. Phys. Chem. 1989;93:1472-8.
[33] Kumar R, Liu D, Zhang L. Advances in proteinous biomaterials. J. Biobased Mater. and Bioenergy. 2008;2:1-24.
[34] Vaz CM, Mano J, Fossen M, Van Tuil R, De Graaf L, Reis R, et al. Mechanical, dynamic-mechanical, and thermal properties of soy protein-based thermoplastics with potential biomedical applications. J. Macromol. Sci. Part B 2002;41:33-46.
[35] Renkema JM, Gruppen H, Van Vliet T. Influence of pH and ionic strength on heat-induced formation and rheological properties of soy protein gels in relation to denaturation and their protein compositions. J. Agric. Food. Chem. 2002;50:6064-71.
[36] Silva S, Santos M, Coutinho O, Mano J, Reis R. Physical properties and biocompatibility of chitosan/soy blended membranes. J. Mater. Sci. Mater. Med. 2005;16:575-9.
[37] Tian H, Wang Y, Zhang L, Quan C, Zhang X. Improved flexibility and water resistance of soy protein thermoplastics containing waterborne polyurethane. Ind. Crops and Prod. 2010;32:13-20.
[38] Lee K, Kim H, Khil M, Ra Y, Lee D. Characterization of nano-structured poly (ε-caprolactone) nonwoven mats via electrospinning. Polymer 2003;44:1287-94.
[39] Li F, Hou J, Zhu W, Zhang X, Xu M, Luo X, et al. Crystallinity and morphology of segmented polyurethanes with different soft‐segment length. J. Appl. Polym. Sci. 1996;62:631-8.
[40] Hung KC, Hsu Sh. Polymer Surface Interacts with Calcium in Aqueous Media to Induce Stem Cell Assembly. Adv. Healthcare Mater. 2015; DOI:10.1002/adhm.201500374.
[41] Hsieh F-Y, Lin H-H, Hsu S-h. 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair. Biomaterials 2015;71:48-57.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19668-
dc.description.abstract3D列印製備組織工程客製化支架是一項極具潛力的加工技術。其中以水膠材料作為生物列印墨水結合細胞列印更可以提供基礎研究及未來醫學治療生物平台。在本研究中,製備三種水性生物可降解聚己內酯(poly(ε-caprolactone), PCL)基底的聚胺酯(polyurethane, PU)奈米水分散液,其PU流體-膠體(sol-gel)的相轉變會受到溫度及電解質影響,以動態光散射(dynamic light scattering, DLS)、小角度X-ray散射(small angle X-ray scattering, SAXS)、X-ray繞射(X-ray diffraction, XRD)及流變學(rheology)等分析方法探討凝膠行為及成膠機制。PU軟鏈段中由20 mol% L型聚乳酸二元醇(poly (L-lactide) , PLLA diol)或DL型聚乳酸二元醇(poly (D,L-lactide), PDLLA diol)及80 mol% PCL二元醇所組成之奈米分散液可在高於37°C時形成緊密堆積的結構。PLLA-PCL軟鏈段組成之PU對溫度提升較有響應性,而PDLLA-PCL軟鏈段組成的PU對額外添加的電解質較為敏感。具有溫感性的PU分散液可於3分鐘內成膠並在30分鐘後達到膠體模數6-8 kPa。此PU水膠可藉由預熱及均勻混合細胞製備生物列印墨水,並於37°C平台3D列印。另外,更進一步引入大豆分離蛋白(soy protein isolate, SPI)製備PU混合膠(PU/SPI hybrid)以增加列印過程中的結構堆疊完整性。PU/SPI混合膠相較於PU有較低的黏度,卻可在37°C更快速的成膠並在1分鐘內達到130 Pa的膠體模數。且PU/SPI hybrid可省去預熱過程直接在室溫(25°C)混入細胞並於37°C直接進行列印。48小時細胞培養在PU/SPI hybrid比純PU膠中有較佳的細胞相容性。此種由SPI與溫度敏感性PU形成的混合膠可能是未來生物3D列印具潛力新型的生物列印墨水。zh_TW
dc.description.abstract3D printing technique shows great promises for fabricating customized structural scaffolds for tissue regeneration. Using hydrogel as bioink for cell printing provides a biological platform for basic research and potential medical treatment. In this study, the waterborne dispersions of poly(ε-caprolactone) (PCL)-based biodegradable polyurethane (PU) nanoparticles were prepared. The sol-gel transition of the PU dispersions affected by temperature or electrolytes was examined by dynamic light scattering (DLS), small angle X-ray scattering (SAXS), X-ray diffraction (XRD), and rheology. The dispersion of PU nanoparticles with 20 mol% poly (L-lactide) (PLLA) diol or poly (D,L-lactide) (PDLLA) diol and 80 mol% PCL diol in soft segement composition could form compact packing structure at temperatures ≥37°C. The dispersion of PU with PLLA-PCL soft segment was more responsive to the temperature increase, while that with PDLLA-PCL soft segment was more responsive to the added electrolytes. With thermally-responsive properties, both PU dispersions could gel in 3 min with the gel modulus increased to about 6-8 kPa after 30 min. PU hydrogels were preheated and blended with cells, and the mixture was later printed at 37°C. The hybrid hydrogel of PU and soy protein isolate (PU/SPI hybrid) was further developed to enhance the structural integrity of the cell-laden constructs during deposition. The viscosity of the PU/SPI hybrid was lower than that of PU gel, but could undergo rapid gelation at 37°C with modulus increased to 130 Pa in 1 min. Moreover, the PU/SPI hybrid gel may be directly mixed with cells at room temperature and subsequently printed at 37°C without preheating. Cells cultured in the PU/SPI hybrid gel for 48 h proliferated faster than those in PU gel. The hybrid gel made of thermoresponsive PU and SPI may be a new type of bioink for 3D biopriniting applications.en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:12:24Z (GMT). No. of bitstreams: 1
ntu-105-R02549044-1.pdf: 8401953 bytes, checksum: 562512fb69367b0cd81151ebd28f5354 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iv
目錄 vi
圖目錄 xi
表目錄 xiii
第一章 文獻回顧 1
1.1. 3D列印及3D列印材料 1
1.2. 生物3D列印水膠材料 2
1.3. 天然型水膠材料 3
1.4. 合成型水膠材料 4
1.5. 混合型水膠材料 5
1.6. 聚胺酯 5
1.6.1. 水性聚胺酯 6
1.7. 研究動機 7
第二章 研究方法 8
2.1. 研究架構 8
2.2. DL型聚乳酸二元醇(poly(DL-lactic acid diol), PDLLA diol)或L型聚乳酸二元醇(poly(L-lactic acid diol), PLLA diol)合成與純化 10
2.2.1. PDLLA diol (或PLLA diol)合成 10
2.2.2. PDLLA diol (或PLLA diol)純化 11
2.3. 核磁共振光譜儀末端基法測定PDLLA diol及PLLA diol分子量 11
2.4. 水性生物可降解聚胺酯(PU)軟鏈段熱性質分析 11
2.5. 水性PU合成 12
2.5.1. PU原料與配方設計 12
2.5.2. PU合成 13
2.6. PU奈米粒基礎性質分析 16
2.6.1. 動態光散射(Dynamic light scattering, DLS)分析 16
2.7 小角度X光散射(Small- angle light scattering, SAXS)分析 16
2.8. 溫度敏感性PU sol-gel相轉換動態流變性質分析 17
2.9. X光繞射(X-ray diffraction, XRD)分析 17
2.10. 衰退全反射傅立葉紅外光譜儀(ATR-FTIR) 18
2.11. 鈣離子吸附原子吸收分光光度法(atomic absorption, AA)分析 18
2.12. 組織工程實驗 18
2.12.1. 細胞培養 18
2.12.2. 細胞染色與標定 19
2.12.3. 製備PU水膠及大豆蛋白混合膠與細胞包覆 19
2.12.4. 3D列印參數及支架尺寸 20
2.12.5. 細胞存活率測定 20
2.13. 統計分析 21
第三章 實驗結果 22
3.1. L型聚乳酸二元醇及DL型聚乳酸二元醇核磁共振分析 22
3.2. 水性PU軟鏈段熱性質分析 22
3.3. 水性PU合成及基本特性分析 23
3.4. 溫度敏感性PU奈米粒動態光散射粒徑分析 23
3.5. PU分散液小角度X光散射分析 23
3.6. 電解質敏感性PU奈米粒動態光散射分析 24
3.7. PU分散液動態流變性質分析 25
3.8. PU分散液於電解質中動態流變性質分析 25
3.9. PCL80DL20及SPI混合膠流變性質分析 26
3.10. PU結晶性質X光繞射分析 27
3.11. PU氫鍵作用力衰退式全反射傅立葉紅外光譜分析 27
3.12. PU鈣離子吸附原子吸收分光光度法分析 28
3.13. PU水膠及混合膠細胞包覆3D列印 28
第四章 討論 29
4.1. PU軟鏈段基本性質分析 29
4.1.1. PLLA diol及PDLLA diol核磁共振分析 29
4.1.2. PU軟鏈段熱性質分析 29
4.2. 水性PU奈米粒基礎性質分析 29
4.3. 溫度敏感性PU奈米粒粒徑分析 30
4.4. 電解質敏感性PU奈米粒動態光散射分析 31
4.5. 電解質敏感性PU SAXS分析 31
4.6. PU分散液動態流變性質分析 32
4.7. PU分散液於細胞培養液中動態流變性質分析 33
4.8. PCL80DL20及SPI混合膠流變性質分析 33
4.9. PCL80DL20及SPI混合膠SAXS分析 34
4.10. PU結晶性質X光繞射分析 34
4.11. PU氫鍵作用力衰退式全反射傅立葉紅外光譜分析 35
4.12. PU鈣離子吸附原子吸收分光光度法分析 35
4.13. PU水膠及混合膠細胞包覆3D列印 36
4.14. 未來展望 36
第五章 結論 38
參考文獻 39
dc.language.isozh-TW
dc.title可降解聚胺酯水膠及大豆蛋白混合膠3D生物列印zh_TW
dc.titlePreparation and characterization of biodegradable polyurethane hydrogel and the hybrid gel with soy protein for 3D cell-laden bioprintingen
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree碩士
dc.contributor.oralexamcommittee張振榮,戴念國,謝馥羽
dc.subject.keyword細胞3D列印,水膠材料,生物可降解聚胺酯(PU),溫度敏感性,大豆蛋白,混合膠,zh_TW
dc.subject.keywordCell-laden 3D bioprinting,hydrogel,biodegradable polyurethane,thermoresponsive,soy protein isolate,hybrid gel,en
dc.relation.page64
dc.rights.note未授權
dc.date.accepted2016-01-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
8.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved