請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19664完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡丁貴 | |
| dc.contributor.author | Chieh Chen | en |
| dc.contributor.author | 陳 捷 | zh_TW |
| dc.date.accessioned | 2021-06-08T02:12:10Z | - |
| dc.date.copyright | 2016-03-08 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2016-01-20 | |
| dc.identifier.citation | Bradford, S. F. and Sanders, F., “Finite-volume model for shallow-water flooding of arbitrary topography” Journal of Hydraulic Engineering, 128(3), 253-262, 2000.
Brufau, P., Vazquez-Cendon, M. E., and Garcia-Navarro, P., “A Numerical model for the flooding and drying of irregular domains”, International Journal for Numerical Methods in Fluids, 6, 247-275, 2001. Brufau, P. and Garcia-Navarro, P., “Unsteady free surface flow simulation over comples topography with a multidimensional upwind technique”, Journal of Computational Physics, 186, 503-526, 2003. Fornberg, B., Driscoll, T. A., Wright, G., and Charles, R., “Observations on the Behavior of Radial Basis Function Approximations Near Boundaries”, Computers and Mathematics with Applications, 43, 473-490, 2002. Fraccarollo, L., Capart, H. and Zech, Y., “A Godunov method for the computation of erosional shallow water transients”, Int. J. Numer. Meth. Fluids, 41, 951-976, 2003. Harten, A., Lax, P. D. and Van Leer, B., “On upstream difference and Godunov-type schemes for hyperbolic conservation laws”, SIAM review, 25(1), 35-61, 1983. Hon, Y. C., Cheng, K. F., Mao, X. Z., and Kansa, E. J., “Multi-quadric solution for shallow water equations”, Journal of Hydraulic Engineering(ASCE), 125, 524-533, 1999. Jin, X. Z., Li, G., and Aluru, N. R., “New approximations and collocation schemes in the finite cloud method”, Computers and Structures, 83, 1366-1385, 2005. Kansa, J. E., “Multi-quadrics-a scattered data approximation scheme with applications to computational fluid dynamics-Ⅱ, Solutions to parabolic, hyperbolic and elliptic partial differential equations”, Computers and Mathematics with Applications, 19, 127-145, 1990. Lai, C., Tsay, T. K., Chien, C. H., Tan, C. H., Wu, I. L., and Wu, N. C., “A real-time flood forecast model for a tide-affected river basin”, Hydrotech Research Institute, National Taiwan Univ., Taipei, Taiwan, 2007. Lai, C., Tsay, T. K., Chien, C. H., and Wu, I. L., “Real-time flood forecasting”, American Scientist, 97, 118-125, 2009. Nam, M. D., Thanh, T. C., “Approximation of function and its derivatives using radial basis function networks”, Applied Mathematical Modeling, 27, 197-220, 2003. Oñate, E., Idelsohn, S., Zienkiewicz, O. C., and Taylor, R. L., “A finite point method in computational mechanics, Applications to convective transport and fluid flow”, International Journal for Numerical Methods in Engineering, 39, 3839-3866, 1996. Oñate, E., Idelsohn, S., Zienkiewicz, O. C., and Taylor, R. L., and Sacco, C., “A stabilized finite point method for analysis of fluid mechanics problems”, Computer Methods in Applied Mechanics and Engineering, 139, 315-346, 1996. Stoker, J. J., “Water Waves: The Mathematical Theory with Applications”, 333-341, 1957. Sun, C. P., Young, D. L., Shen, L. H., Chen, T. F., Hsian, C. C., “Application of localized meshless methods to 2D shallow water equation problems”, Engineering Analysis with Boundary Elements, 37, 1340, 2013. Wong, S. M., Hon, Y. C., and Golberg, M. A., “Compactly supported radial basis functions for shallow water equations”, Applied Mathematics and Computation, 127, 79-101, 2002. Wu, N. J., Tsay, T. K., and Young, D. L., “Meshless simulation for fully nonlinear water waves”. International Journal for Numerical Methods in Fluids, 50, 219-234, 2006. Wu, N. J., Tsay, T. K., and Young, D. L., “Computation of nonlinear free-surface flows by a meshless numerical method”, Journal of Waterway, Port, Coastal and Ocean Engineering (ASCE), 134, 97-103, 2008. Wu, N. J., Tsay, T. K., “Applicability of the method of fundamental solutions to 3-D wave-body interaction with fully nonlinear free surface”, Journal of Engineering Mathematics, 63, 61-78, 2009. Wu, I. L., Tsay, T. K., and Lai, C., “Numerical modelling of basin-wide flood flow using variable flow-resistance coefficients”, Journal of Flood Engineering, 2(1), 99-120, 2011. Wu, N. J., and Chang, K. A., “Simulation of free surface waves in liquid sloshing using a domain type meshless method”, International Journal for Numerical Methods in Fluids, 67, 269-288, 2011. Wu, N. J., Chen, B. S., and Tasy, T. K., “A review on the Modified Finite Point Method”, Mathematical problems in engineering, 350364, 2014. Zhou, X., Hon, Y. C., and Cheung, K. F., “A grid-free, nonlinear shallow-water model with moving boundary”, Engineering Analysis with Boundary Elements, 28, 967-973, 2004. 朱翌成,「利用修正有限配點法對二維自由液面勢流流場之數值模擬」,國立台灣大學土木工程學研究所碩士論文,2012。 林英泰,「複雜地形潰壩問題之數值模擬」,私立逢甲大學水利工程學研究所碩士論文,2004。 姜國正,「以修正有限配點法模擬水波港池共振問題」,國立台灣大學土木工程學研究所碩士論文,2012。 陳昌俊,「應用影像分析於潰壩後下游動床與水面變動之研究」,國立台灣大學土木工程學研究所碩士論文,2013。 郭文達、賴進松、林國峰、黃振家、陳昌俊,「對流逆風分裂式有限體積算則於二維淺水流動之模擬應用」,台灣水利季刊,第62卷,第2期,2014。 楊淳文,「利用修正有限配點無網格法於水波散射問題」,國立台灣大學土木工程學研究所碩士論文,2012。 蔡智恆、蔡長泰,「天然河道底床沖淤模式之乾點處理」,第二十六屆全國力學會議,雲林,光碟I027,2002。 蔡政諺,「利用修正有限配點法產生複連通區域之符合邊界正交網格」,國立台灣大學土木工程學研究所碩士論文,2014。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19664 | - |
| dc.description.abstract | 本論文主要係以修正有限配點法(Modified finite point method, MFPM)內的權重最小二乘局部近似(Weighted moving-least-square local approximation, WMLA)法,搭配多項式做為基底函數,來模擬不恆定淺水流問題。而此法之計算架構屬於無網格數值方法中的配點法,具有理論簡單、程序直接、佈點自由、適用於複雜與變動邊界問題等優點,且在擬合空間中的局部區域離散資料時,除了能準確地推算區域內任一位置的函數值外,更可以容易地求得所對應的函數偏導數值。本方法甚至可以靈活應用於給定不同偏導數形式之邊界條件,極具實用性。在時間方面,考量顯性法計算快速與隱性法具高穩定性之優點,採用顯性的Leap-frog method搭配隱性的Crank-Nicolson method形成的Predictor-corrector method,如此便可免於一般單獨使用隱性法求解時之矩陣運算流程,特別是對於求解非線性偏微分方程問題時,矩陣系統需要依靠迭代才得以求解,而因為Predictor-corrector method仍屬於顯示法,不需要經過迭代即可求解,能大量地節省程式運算耗時,且亦能藉由其中包含的隱性法來改善運算之穩定性,大幅地提升整體計算效率。
本研究之控制方程為淺水波方程組(Shallow water equations, SWE),屬於非線性又聯立的偏微分方程組,當使用WMLA法時,便能快速且準確地求解。另外,文中將應用此法所建立之不恆定淺水流水理數值模式,配合多種情況下適用的初始條件、邊界條件、乾溼地形與區域分割處理方法,進行包含理想與實際等多個案例全域自由液面及流場之模擬,並經由解析解、實驗量測數據或其他數值方法的模擬結果驗證後,皆獲得良好的成果,適合成為未來從事大型水利工程或相關研究之參考依據。 | zh_TW |
| dc.description.abstract | In this study, the weighted moving-least-square local approximation (WMLA) which is included in modified finite point method (MFPM) is used to simulate unsteady shallow-water flow problems with polynomial basis function. The structure of computational algorithms employed in this method is based on collocation of meshless numerical method that is simple in theory, direct in programing, flexible in setting computational nodes and easy to use in complex and variable boundary problems. When using the WMLA fits discrete data in local domain of space, it can not only calculate the function values of any position in the region accurately, but also obtains the corresponding partial derivative values easily. This method can even specify boundary conditions of the partial derivative form flexibly, so it is very practical. In time marching, adopting Predictor-corrector method which composes of explicit Leap-frog method and implicit Crank-Nicolson method simulates. Both the computational efficiency and numerical stability are maintained. Especially, when we solve nonlinear partial differential equations, matrix systems need to be solved by iterations. The Predictor-corrector method is still explicit method and therefore, does not require any time iterations. Not only does it save much computational time, but it also improves the stability.
The governing equations of this study are shallow water equations (SWE), which belong to nonlinear and combined partial differential equations. Using the WMLA can solve these equation efficiently. In addition, this thesis will use the numerical models of unsteady shallow-water hydrodynamics which is developed by WMLA to simulate many idealized and realistic cases. It can obtain free surface and flow field in global domain under different initial conditions, boundary conditions, dry or wet topography and regional segmentation approaches. The simulated results are verified with analytical solutions, experimental measurement data and other numerical method simulations. Very good agreement is observed. Solutions obtained in this study can be applied to large-scale hydraulic engineering problems or other related researches. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T02:12:10Z (GMT). No. of bitstreams: 1 ntu-104-R02521307-1.pdf: 6489306 bytes, checksum: 5218723cb89117a380c39181231af027 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
謝誌 II 摘要 III Abstract IV 目錄 VI 圖目錄 VIII 第一章 緒論 1 1-1 研究動機與目的 1 1-2 文獻回顧 1 1-3 本文架構 4 第二章 淺水動力學數學模式 5 2-1 淺水動力學方程式推導 5 2-2 初始條件 9 2-3 邊界條件 10 2-3-1 封閉邊界條件 10 2-3-2 開放邊界條件 11 2-4 乾溼地形處理方法 11 第三章 數值方法 13 3-1 有網格與無網格數值方法之比較 13 3-2 無網格數值方法 14 3-2-1 傳統有限配點法(FPM) 14 3-2-2 修正有限配點法(MFPM) 19 3-2-3 權重最小二乘局部近似(WMLA)法之概念 21 3-3 淺水動力學方程之時間項離散化與演算流程 25 第四章 數值模擬結果與討論 28 4-1 平面一維理想潰壩問題 28 4-1-1 下游存在有限水深之理想潰壩問題 29 4-1-2 下游為乾床之理想潰壩問題 31 4-2 平面一維未含源項範例之模擬 32 4-2-1 HLL scheme 32 4-2-2 模擬結果 34 4-3 平面一維含源項問題之模擬 39 4-3-1 LHLL scheme 40 4-3-2 模擬結果 41 4-4 平面二維問題之模擬 43 4-5 實際案例之模擬 53 4-5-1 案例介紹 53 4-5-2 計算區域分割處理 54 4-5-3 模擬結果 57 第五章 結論與建議 70 5-1 結論 70 5-2 建議 71 參考文獻 72 附錄 76 A-1 下游存在有限水深之理想潰壩問題正湧浪傳遞速度推導 76 A-2 理想潰壩問題負湧浪區域各位置、時間之水深與流速推導 76 | |
| dc.language.iso | zh-TW | |
| dc.title | 以權重最小二乘局部近似法應用於不恆定淺水流水理數值模擬之研究 | zh_TW |
| dc.title | Numerical Simulation of Unsteady Shallow-water Hydrodynamics with Weighted Moving-least-square Local Approximation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊德良,吳南靖 | |
| dc.subject.keyword | 無網格數值方法,配點法,多項式基底函數,權重最小二乘局部近似,不恆定淺水流,潰壩波,淺水波方程組, | zh_TW |
| dc.subject.keyword | Meshless numerical method,Collocation method,Polynomial basis function,Weighted moving-least-square local approximation,Unsteady shallow-water flow,Dam-break wave,Shallow water equations, | en |
| dc.relation.page | 77 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2016-01-21 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 6.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
