Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19657
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉子銘(Tzu-Ming Liu)
dc.contributor.authorCHIA-HUNG LINen
dc.contributor.author林家宏zh_TW
dc.date.accessioned2021-06-08T02:11:45Z-
dc.date.copyright2016-02-16
dc.date.issued2015
dc.date.submitted2016-01-22
dc.identifier.citation[1] 朱忠勇. (2003).臨床血液學實驗室診斷進展. 中華檢驗醫學雜誌, 26(12), 729-730.
[2] Van Dilla, M. A., Truiullo, T. T., Mullaney, P. F., & Coultex, J. R. (1969). Cell microfluorometry: a method for rapid fluorescence measurement. Science, 163(3872), 1213-1214.
[3] Givan, A. L. (2013). Flow cytometry: first principles. John Wiley & Sons.
[4] Ormerod, Michael G. (1999). Flow cytometry. Royal Microscopical Society Microscopy Handbooks Volume 44, 88pp
[5] Shapiro, H. M. (2005). Practical flow cytometry. John Wiley & Sons.
[6] Darzynkiewicz, Z., & Robinson, J. P. (1994). Flow cytometry (Vol. 42). Academic Press.
[7] Brown, M., & Wittwer, C. (2000). Flow cytometry: principles and clinical applications in hematology. Clinical chemistry, 46(8), 1221-1229.
[8] Watson, J. V. (1999). The early fluidic and optical physics of cytometry.Cytometry, 38(1), 2-14.
[9] 魏熙胤, & 牛瑞芳. (2006). 流式细胞儀的發展歷史及其原理和應用進展. 現代儀器, 4, 8-11.
[10] Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (1997). Molecular Biology of the Cell (Garland Science, New York, 2002).
[11] Zhelev, D. V., & Hochmuth, R. M. (1995). Mechanically stimulated cytoskeleton rearrangement and cortical contraction in human neutrophils.Biophysical journal, 68(5), 2004.
[12] Zhelev, D. V., Needham, D., & Hochmuth, R. M. (1994). Role of the membrane cortex in neutrophil deformation in small pipets. Biophysical journal, 67(2), 696.
[13] Needham, D., Hochmuth, R. M. (1990). Rapid flow of passive neutrophils into a 4 microns pipet and measurement of cytoplasmic viscosity. J Biomech Eng, 112(3): 269-276.
[14] Harris, A. G., & Skalak, T. C. (1993). Leukocyte cytoskeletal structure determines capillary plugging and network resistance. American Journal of Physiology-Heart and Circulatory Physiology, 265(5), H1670-H1675.
[15] Ellis, C. G., Jagger, J., & Sharpe, M. (2005). The microcirculation as a functional system. Critical Care, 9(Suppl 4), S3.
[16] Choudhury, S., Wilson, M. R., Goddard, M. E., O'Dea, K. P., & Takata, M. (2004). Mechanisms of early pulmonary neutrophil sequestration in ventilator-induced lung injury in mice. American Journal of Physiology-Lung Cellular and Molecular Physiology, 287(5), L902-L910.
[17] Nishino, M., Tanaka, H., Ogura, H., Inoue, Y., Koh, T., Fujita, K., & Sugimoto, H. (2005). Serial changes in leukocyte deformability and whole blood rheology in patients with sepsis or trauma. Journal of Trauma and Acute Care Surgery,59(6), 1425-1431.
[18] Athanassiou, G., Matsouka, P., Kaleridis, V., & Missirlis, Y. (1999). Deformability and filterability of white blood cell subpopulations. Evaluation of these parameters in the cell line HL-60 and in type II diabetes mellitus. Clinical hemorheology and microcirculation, 22(1), 35-43.
[19] Mercuri, M., Ciuffetti, G., Robinson, M., & Toole, J. (1989). Blood cell rheology in acute cerebral infarction. Stroke, 20(7), 959-962.
[20] Shen, K., Sung, K. L., Whittemore, D. E., DeLano, F. A., Zweifach, B. W., & Schmid-Schönbein, G. W. (1995). Properties of circulating leukocytes in spontaneously hypertensive rats. Biochemistry and cell biology, 73(7-8), 491-500.
[21] Skoutelis, A. T., Kaleridis, V., Athanassiou, G. M., Kokkinis, K. I., Missirlis, Y. F., & Bassaris, H. P. (2000). Neutrophil deformability in patients with sepsis, septic shock, and adult respiratory distress syndrome. Critical care medicine,28(7), 2355-2359.
[22] Dadgostar, H., Holland, G. N., Huang, X., Tufail, A., Kim, A., Fisher, T. C., ... & Bartsch, D. (2006). Hemorheologic abnormalities associated with HIV infection: in vivo assessment of retinal microvascular blood flow. Investigative Ophthalmology and Visual Science, 47(9), 3933.
[23] Downey, G. P., Doherty, D. E., Schwab, B., Elson, E. L., Henson, P. M., & Worthen, G. S. (1990). Retention of leukocytes in capillaries: role of cell size and deformability. Journal of Applied Physiology, 69(5), 1767-1778.
[24] Chien, S., Schmid-Schönbein, G. W., Sung, K. L., Schmalzer, E. A., & Skalak, R. (1983). Viscoelastic properties of leukocytes. Kroc Foundation Series, 16, 19-51.
[25] Dong, C., Skalak, R., Sung, K. L. P., Schmid-Schonbein, G. W., & Chien, S. (1988). Passive deformation analysis of human leukocytes. Journal of biomechanical engineering, 110(1), 27-36.
[26] Holmes, D., Pettigrew, D., Reccius, C. H., Gwyer, J. D., van Berkel, C., Holloway, J., ... & Morgan, H. (2009). Leukocyte analysis and differentiation using high speed microfluidic single cell impedance cytometry. Lab on a Chip,9(20), 2881-2889.
[27] Gossett, D. R., Henry, T. K., Lee, S. A., Ying, Y., Lindgren, A. G., Yang, O. O., Di Carlo, D. (2012). Hydrodynamic stretching of single cells for large population mechanical phenotyping. Proceedings of the National Academy of Sciences, 109(20), 7630-7635.
[28] Rosenbluth, M. J., Lam, W. A., & Fletcher, D. A. (2008). Analyzing cell mechanics in hematologic diseases with microfluidic biophysical flow cytometry. Lab on a Chip, 8(7), 1062-1070.
[29] Holmes, D., Pettigrew, D., Reccius, C. H., Gwyer, J. D., van Berkel, C., Holloway, J., ... & Morgan, H. (2009). Leukocyte analysis and differentiation using high speed microfluidic single cell impedance cytometry. Lab on a Chip,9(20), 2881-2889.
[30] Sraj, I., Eggleton, C. D., Jimenez, R., Hoover, E., Squier, J., Chichester, J., & Marr, D. W. (2010). Cell deformation cytometry using diode-bar optical stretchers. Journal of biomedical optics, 15(4), 047010-047010.
[31] Holmes, D., Whyte, G., Bailey, J., Vergara-Irigaray, N., Ekpenyong, A., Guck, J., & Duke, T. (2014). Separation of blood cells with differing deformability using deterministic lateral displacement. Interface focus, 4(6), 20140011.
[32] Gossett, D. R., Henry, T. K., Lee, S. A., Ying, Y., Lindgren, A. G., Yang, O. O., ... & Di Carlo, D. (2012). Hydrodynamic stretching of single cells for large population mechanical phenotyping. Proceedings of the National Academy of Sciences, 109(20), 7630-7635.
[33] Born, M., & Wolf, E. (1999). Principles of Optics, 7th (expanded) ed.
[34] Webb, R. H. (1996). Confocal optical microscopy. Reports on Progress in Physics, 59(3), 427.
[35] Nicoud, F., & Poinsot, T. (2005). Thermoacoustic instabilities: Should the Rayleigh criterion be extended to include entropy changes?. Combustion and Flame, 142(1), 153-159.
[36] Minsky, M. (1961). U.S. Patent No. 3,013,467. Washington, DC: U.S. Patent and Trademark Office.
[37] Yamazaki, T., Komuro, I., & Yazaki, Y. (1995). Molecular mechanism of cardiac cellular hypertrophy by mechanical stress. Journal of molecular and cellular cardiology, 27(1), 133-140.
[38] Sheppard, C. J., & Shotton, D. M. (1997). Confocal laser scanning microscopy. BIOS Scientific Publishers.
[39] Wilson, T., & Sheppard, C. (1984). Theory and practice of scanning optical microscopy (Vol. 180). London: Academic Press.
[40] Gu, M. (1996). Principles of three dimensional imaging in confocal microscopes(p. 141). Singapore: World Scientific.
[41] Stelzer, E. H. (2000). Practical limits to resolution in fluorescence light microscopy. Imaging neurons. Cold Spring Harbor Press, Cold Spring Harbor, 12-1.
[42] Murray, John M. (2005). Confocal microscopy, deconvolution, and structured illμmination methods. Live Cell Imaging—A Laboratory Manual. RD Goldman and DL Spector, editors. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 239-279.
[43] Jonkman, J. E., & Stelzer, E. H. (2002). Resolution and contrast in confocal and two-photon microscopy. Confocal and Two-Photon Microscopy: Foundations, Applications, and Advances, New York: Wiley-Liss, 101-125.
[44] Török, P., & Wilson, T. (1997). Rigorous theory for axial resolution in confocal microscopes. Optics communications, 137(1), 127-135.
[45] Sraj, I., Eggleton, C. D., Jimenez, R., Hoover, E., Squier, J., Chichester, J., & Marr, D. W. (2010). Cell deformation cytometry using diode-bar optical stretchers. Journal of biomedical optics, 15(4), 047010-047010.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19657-
dc.description.abstract血液檢測為健康檢查中重要參考指標之一,血液中各個角色的數量與比例都可以作為臨床上評估狀況的參考,如紅血球數量可以判斷是否貧血、白血球多寡可以判斷癌症、HIV 等等。傳統血液抹片檢查為相當常見的檢查項目,但相當耗時耗力,而為了達到自動高速計數的目標,科學家們開始發展了血球計數器、血液分析儀,目前最為精確的儀器為流式細胞分選儀,與傳統的血液抹片檢查相比,流式細胞分選儀可以達到相當高速的血球計數且分選特定系細胞目的。
流式細胞分選儀中有四大系統: 液相系統、光學系統、電子系統、分選系統。利用前散射光(Forward Scattering)、側散射光(Side Scattering)、螢光(Fluorescence)作為限制條件以分選出不同種類細胞。然而,流式細胞分選儀常為達到更高的分選精確性,需要添加染劑,但這不僅需要雷射維護費用、染劑費用,亦有可能對於細胞造成傷害,因此本研究室積極尋找其他細胞影像上特徵以提升分選細胞的
可能性。
本研究室先前嘗試以倍頻顯微術觀察中性粒白血球(Neutrophil)、單核球(Monocyte)、淋巴球(Lymphocyte)的三倍頻強度,從影像中可以發現中性粒細胞比淋巴球、單核球三倍頻訊號更強,且細胞內有許多小核體,淋巴球尺寸最小、細胞內常有一圓核並伴隨一圓型亮點,單核球細胞尺寸最大。藉由三倍頻強度、自體紅螢光強度、大小可以作為三維度限制條件分選此三類白血球。
然而,無論是流式細胞儀或倍頻顯微術皆需要依賴雷射光源,為了減少雷射維護與染劑使用上的費用,本研究積極發展一種嶄新方式分選白血球種類,主要利用血球的大小與機械性質的不同在明視野與不須染劑的情況下達到分選中性粒白血球(Neutrophil)、單核球(Monocyte)、淋巴球(Lymphocyte)的目的。首先,本研究對於靜置狀態下的白血球分別以雷射光源的Leica TCS SP5 II 多光子雷射共軛焦顯微鏡與明視野下的螢光顯微鏡Leica DMI 3000B 搭配CCD 做型態上變形分析。再者,將中性粒白血球(Neutrophil)、單核球(Monocyte)、淋巴球(Lymphocyte)分別以微注射幫浦加壓入微流道中,觀察細胞在不同流力場中所受正向應力、剪應力時所產生的形變。研究結果中可以發現在高流速狀態下,淋巴球細胞有較大的變形,而大小也有顯著的差異,意味著明視野顯微影像的確適合應用在高流速環境下的血球觀察,在未來,本研究室希望以雷射層照顯微術以高速成像方式觀察更高流速的細胞影像,以影像上的資訊達到無須染色方式增加流式細胞分選儀的分辨率。從長遠來看,本研究對於血球細胞於流體動力學上的價值除了可以應用離體血液檢查儀器上提高血液分析品質外,在未來亦可以做為非侵入式血液檢查發展中血液流體動力學研究上的參考指標。
zh_TW
dc.description.abstractBlood test is one of the most important indicators of physical examination. The amount and proportion of every role in blood can be direction of medical assessment. For instant, the amount of red blood cell could be the sign of Anemia. Also, the variety of amount of white blood cell could be a guide of HIV, cancer, and other disease. In more detail, traditionally, biopsy is a relatively common inspection, but it wastes many time and artificially efforts. Thus, in order to achieve automatically cell counting goal, in the past decades, scientists have beginning to develop CBC (Complete Blood Count), and Blood analysis technology. In the moment, the most accurate and precise machine is Flow cytometer (FCM). Compare to traditional biopsy inspection, FCM can not only count blood cell with higher speed but also can sort specific cell and particles.
FCM was divided into four parts: microfluidic system, optical system, electric system, and sorting system. The intensity of forward scattering, side scattering, and fluorescence serve as the index to distinguish different kinds of cells. Nevertheless, in order to achieve higher accuracy, it frequently is required to add particular biomarker, which probably damage intact cell, moreover, increase the cost for laser maintenance. Therefore, currently our Lab devote to develop cell sorting with higher quality
depended on the characteristics of cell image in many ways.
Previously, our Lab differentiates Neutrophils, Monocytes, Lymphocytes by the intensity of Third-Harmonic Generation. From the cell image, we can find the intensity of Third-Harmonic Generation of Neutrophils is higher than Monocytes and Lymphocytes. Besides, Neutrophils included many small nucleuses. With the intensity of Third-Harmonic Generation, auto-fluorescence and size and size, we can divide these three kinds of leukocytes into three groups.
However, both Flow Cytometry and Harmonic Generation technique need to depend on laser source, so this thesis devote to develop an innovative way to distinguish different kinds of leukocytes without the maintenance of laser source and the waste of biomarker. To achieve our goal, the main approach in this thesis is that by size of leukocytes and morphodynamic properties of leukocytes under bright-field to sort different kinds of leukocytes without biomarker. First, we observe the morphology of stationary leukocytes on cover glass by Leica TCS SP5 II confocal microscope with laser source, resonant scanner and Leica DMI 3000B Fluorescence microscope with CCD under bright-field. Secondly, we pμmp Neutrophils, Monocytes and Lymphocytes into microfluidic channel and observe the deformation of cells suffer from normal stress and shear stress under different flow field. From the result, we can find the lymphocytes deform significantly under higher speed.
Moreover, the difference of size of kinds of leukocytes is significantly obvious that means bright-field image is able to be applied to observe blood cells in high speed. In near future, our lab plan to use laser light sheet microscopy to observe cell image with higher speed, which can increase the sorting precision of Flow cytometry without biomarker.
In the long run, the value of this thesis not only helps increase the quality and accuracy of blood sorting machine in vitro, but also can be served as haemodynamic reference for in vivo developing non-invasive blood inspection.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:11:45Z (GMT). No. of bitstreams: 1
ntu-104-R02548050-1.pdf: 4230946 bytes, checksum: 09008a6c6e24732b7494c449a343fc04 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents目錄
致謝 I
中文摘要 II
Abstract IV
目錄 VII
第1章 緒論 1
第1節 血液基本組成 1
第2節 血液檢驗發展 3
第3節 流式細胞分選儀與影像流式細胞儀 5
第4節 白血球的機械性質研究發展 9
第5節 研究動機 11
第2章 基礎理論 12
第1節 傳統光學顯微鏡 12
第2節 光學共軛焦顯微術 16
第3節 流體流動現象 18
第4節 物體的變形 22
廣義虎克定律(Hooke’s law) 22
Maxwell 模型與 Kelvin模型 24
第3章 實驗架構與研究方法 26
第1節 實驗儀器 26
第1項 多光子雷射共軛焦掃描顯微鏡 26
第2項 螢光顯微鏡 28
第3項 流式細胞分選儀 30
第4項 微注射器幫浦 31
第5項 針頭管材 31
第6項 血球純化與萃取 33
第7項 微流道晶片設計 39
第8項 數據量測 41
第2節 實驗設計 42
第4章 實驗結果與討論 45
第1節 靜置下血球變形 48
第2節 流動時血球變形 54
第3節 不同速度下變形比較 58
第4節 血球大小比較 61
第5章 結論與未來展望 64
第6章 參考文獻 66
dc.language.isozh-TW
dc.title白血球在明視野顯微影像下流動型態變異之探討zh_TW
dc.titleMorphodynamic properties of flowing
leukocytes under bright-field microscope
en
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree碩士
dc.contributor.oralexamcommittee王宗道(Tzung-Dau Wang),沈弘俊(Horn-Jiunn Sheen)
dc.subject.keyword白血球,中性粒,單核球,淋巴球,形態變形,機械性質,明場光學顯微鏡,zh_TW
dc.subject.keywordleukocytes,neutrophil,monocyte,lymphocyte,morphodynamic,mechanical property,bright-field microscopy,en
dc.relation.page69
dc.rights.note未授權
dc.date.accepted2016-01-22
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
4.13 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved