Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用數學科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19653
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王藹農
dc.contributor.authorJhih-Ciang Wuen
dc.contributor.author吳志強zh_TW
dc.date.accessioned2021-06-08T02:11:32Z-
dc.date.copyright2016-02-16
dc.date.issued2016
dc.date.submitted2016-01-22
dc.identifier.citation[1] Vasile Berinde. Iterative approximation of fixed points for pseudo- contractive operators. In Seminar on Fixed Point Theory, volume 3, pages 209–216, 2002.
[2] Vasile Berinde. Iterative approximation of fixed points. Springer, 2007.
[3] William E Boyce, Richard C DiPrima, and Charles W Haines. Ele- mentary differential equations and boundary value problems, volume 9. Wiley New York, 1992.
[4] Ji-Huan He. A new approach to nonlinear partial differential equa- tions. Communications in Nonlinear Science and Numerical Simulation, 2(4):230–235, 1997.
[5] Ji-Huan He. Variational iteration method–a kind of non-linear ana- lytical technique: some examples. International journal of non-linear mechanics, 34(4):699–708, 1999.
[6] Ji-Huan He. Variational iteration method—some recent results and new interpretations. Journal of computational and applied mathematics, 207(1):3–17, 2007.
[7] Ji-Huan He, Guo-Cheng Wu, and F Austin. The variational itera- tion method which should be followed. Nonlinear Science Letters A- Mathematics, Physics and Mechanics, 1(1):1–30, 2010.
[8] Ji-Huan He and Xu-Hong Wu. Variational iteration method: new devel- opment and applications. Computers & Mathematics with Applications, 54(7):881–894, 2007.
[9] SA Khuri and Ali Sayfy. Variational iteration method: Green’s functions and fixed point iterations perspective. Applied Mathematics Letters, 32:28–34, 2014.
[10] Cornelius Lanczos. Linear differential operators, volume 564. SIAM, 1961.
[11] Zhanjie Xu, James R Travis, and Wolfgang Breitung. Green’s function method and its application to verification of diffusion models of GAS- FLOW code. Forschungszentrum Karlsruhe, 2007.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19653-
dc.description.abstract此篇論文主要在探討變換迭代法與固定點迭代之間的關聯性。變換迭代法是一種用來處理線性或非線性問題的解析技巧,我們將其與皮卡迭代法比較。另一方面,考慮非齊次常微分方程或者是非齊次偏微分方程,格林函數是一個相當好的解決技巧,在初始值問題中,我們利用此一函數的特性去推論我們所感到興趣的關聯性。本論文的結果可以應用在邊界值問題,更進一步地,在固定點迭代的選擇上也可以嘗試其他的迭代法。zh_TW
dc.description.abstractThe main aim of this article is to study the correlation between the variational iteration method and fixed-point iteration. The variational iteration method is an analytical technique for linear or non-linear problems and we compare it with one fixed-point iteration called Picard iteration. On the other hand, considering inhomogeneous ordinary differential equation or inhomogeneous partial differential equation, Green's function is a technique to solve these equations. We applied its special properties to deduce this correlation for initial value problems. Our result can be applied to boundary value problems. Furthermore, the selection of fixed-point iteration can be replaced.en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:11:32Z (GMT). No. of bitstreams: 1
ntu-105-R02246001-1.pdf: 597664 bytes, checksum: 33f53297de1df26e2d7ffdaae4d5ce24 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents致謝 i
Contents ii
中文摘要 iv
Abstract v
1 Introduction 1
1.1 LiteratureReview......................... 2
2 Background 3
2.1 SomeFundamentals ....................... 3
2.1.1 HeavisideStepFunction ................. 4
2.1.2 DiracDeltaFunction................... 4
2.1.3 Green’sFunction ..................... 6
2.2 Fixed-pointIteration....................... 12
2.2.1 Fixed-point ........................ 12
2.2.2 PicardIteration ..................... 13
2.2.3 KrasnoselskijIteration.................. 14
2.2.4 MannIteration ...................... 14
3 VIM and Fixed-point iterative schemes 16
3.1 VariationalIterationMethod .................. 16
3.2 Relationship between the VIM and Standard Fixed-point It-
erativeSchemes ......................... 17
3.2.1 FirstOrderDifferentialEquation . . . . . . . . . . . . 18
3.2.2 SecondOrderDifferentialEquation . . . . . . . . . . . 20
4 Conclusion 23
References 24
dc.language.isoen
dc.title藉由格林函數探討變換迭代法與固定點迭代之間的關聯性zh_TW
dc.titleCorrelation between Variational Iteration Method and Fixed-point Iteration via Green's Functionen
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree碩士
dc.contributor.oralexamcommittee謝春忠,陳中川
dc.subject.keyword格林函數,變換迭代法,固定點迭代,zh_TW
dc.subject.keywordVariational Iteration Method,Fixed-point Iteration,en
dc.relation.page25
dc.rights.note未授權
dc.date.accepted2016-01-22
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用數學科學研究所zh_TW
顯示於系所單位:應用數學科學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
583.66 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved