請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19637完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 方煒(Wei-Fang) | |
| dc.contributor.author | Shu-Wei Yang | en |
| dc.contributor.author | 楊書瑋 | zh_TW |
| dc.date.accessioned | 2021-06-08T02:10:11Z | - |
| dc.date.copyright | 2016-02-15 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-01-27 | |
| dc.identifier.citation | 1. 大山克己,古在豐樹,久保田智惠利,全昶厚,長谷川智行,橫井真悟,西村將雄。2002。封閉型種苗生產系統中使用家用熱泵供冷時的成績係數。植物工廠學會誌14 (3):141-146。
2. 方煒。2001。自動化植物工廠。農業自動化叢書第十一輯:103-112。 3. 方煒、饒瑞佶。2002。高度發光二極體於生物產業之應用。中華農學會報(5):432-446。 4. 方煒。2009。台灣發展精緻農業不要忽略了推動植物工廠。生機與農機論文發表會。宜蘭大學。 5. 方煒(譯)。2010。太陽光型植物工廠-永續性先進植物工廠。初版。台北:財團法人豐年社。 6. 方煒(譯)。2011。完全控制型植物工廠。初版。台北:財團法人豐年社。 7. 方煒。2011。話說『植物工廠』。初版。台北:農業推廣委員會。 8. 王慧媛。2010。環境控制下波士頓萵苣兩階段立體化栽培模式之探討。碩士論文。台北:國立台灣大學生物產業機電工程學研究所。 9. 邱偉豪。2009。控制環境內波士頓萵苣立體化栽培之研究。碩士論文。台北:國立台灣大學生物產業機電工程學研究所。 10. 李杰。2013。植物工廠水耕萵苣嫩葉生產之研究。碩士論文。台北:國立台灣大學生物產業機電工程學研究所。 11. 高德錚。1986。水耕栽培-精緻蔬菜生產技術之開發。台中區農推專訓56:22-31。 12. 楊其長、張成波。2004。植物工廠概論。北京市 : 中國農業科學技術。 13. 劉冠伶。2011。植物工廠量產低硝酸鹽萵苣之研究。碩士論文。台北:國立 台灣大學生物產業機電工程學研究所。 14. 蕭伯翰。2009。植物立體化栽培控制環境之遠端監控。碩士論文。台北:國立台灣大學生物產業機電工程學研究所。 15. 蔡致榮、吳有恒。2010。農業設施節能技術與系統研發。農業試驗所特刊第150號:38-69 16. 游舒淇、張明毅、鄔家琪等人。2013。促進根部活性的潮汐灌溉立體栽培層架之研製。試驗室未發表之研究。 17. 吳明哲、連忠勇。1993。蔬菜產業之發展。蔬菜生產與發展研討會專刊: 13-18 農業試驗所特刊第41號。 18. 錢麗珠。2011。上海市蔬菜科學推廣站。 19. 台灣農業科技發展策略規劃報告書。2003。行政院農業委員會。 20. Albright,L.D.,A.J.Both.andA.J.Chiu.2000.Controllinggreenhouselighttoa consistentdailyintegral.TransactionsoftheASAE43(2):421-431. 21. Baessler, C., and S. Klotz. 2006. Effects of changes in agricultural land-use on landscape structure and arable weed vegetation over the last 50 years. Agriculture, Ecosystems and Environment. 115, 43-50. 22. Bruinsma, J、(Ed.). 2003. World Agriculture: Towards 2015/2030, An FAO Perspective、Earth Scan Publications Ltd、London, UK. 23. Both A.J., L.D. Albright, R.W. Langhans, R.A. Reiser, and B.G. Vinzant.1997. Hydroponic lettuce production influenced by integrated supplemental light levels in a controlled environment agriculture facility: experimental results. Acta Hort. 418:45-52. 24. Both, A. J., L. D. Albright, and R. W. Langhans. 1998. Coordinated management of daily PAR integral and carbon dioxide for hydroponic lettuce production. Acta Horticulture 456:45-51 25. Bugbee, B.2004. Nutrient managent in recirculating hydroponic culture. Acta Hort. (ISHS) 648:99-112 26. Christian, C.S. and Gray, S.G. 1941. Interplant competition in mixed wheat populations and its relation to single plant selection. Council for Scientific and Industrial Research Australia 14: 59-68. 27. Chou, S. K., K. J. Chua, J. C. Ho, and C. L. Oct. 2004. On the study of an energy-efficient greenhouse for heating, cooling and dehumidification applications. Applied Energy. 77: 355-373 28. Ciolkosz,D.E., L.D.Albright, and A.J. Both. 1998. Characterizing evapotranspirationinagreenhouselettucecrop.ActaHorticulturae456:255-261 29. Cockshull, K. E. 1992. Crop environments. Acta Horticulturae. 312: 7-85. 30. Conesa, E.,Vicente MJ, Alvarez-Rogel J, Franco JA, Martinez-Sanchez JJ (2009). Relationships between Salt Type and Seed Germination in Three Plant Species Growing in Salt Marsh Soils of Semi-Arid Mediterranean Environments. Arid Land Res. Manage. 23: 103-114. 31. Demers, D.A., J. Charbonneau, and A. Gosselin. 1990. Effects de l’éclairage d’appoint sur la croissance et la productivité du poivron cultivé en serre. Can. J. Plant Sci. 71: 587-594. 32. Despommier, D. 2008. The vertical farm: controlled environment agriculture carried out in tall buildings would create greater food safety and security for large urban populations Journal für Verbraucherschutz und Lebensmittelsicherheit. Volume 6, Issue 2. 33. Dolly, A. 2005. Population Boom Pushes Asia to Accept GMO Rice、Reuters News Services, Retrieved June 21, 2007 34. Dorais, M., A. Gosselin, and M. J. Trudel. 1990. Annual greenhouse tomato production under a sequential intercropping system using supplemental light. Scientia Hort. 45: 225-234 35. Goto.E.,A.J.Both,L.D.Albright,R.W.Langhans,andA.R.Leed.1996.Effectof dissolvedoxygenConcentrationonlettucegrowthinfloatinghydroponics.ActaHorticulturae440:205-210 36. Gaudreau, L., Charbonneau, J., V´ezina, L. P., and Gosselin, A. 1994. Photoperiod and photosynthetic photon flux influence growth and quality of greenhousegrown lettuce. HortScience 29: 1285–1289. 37. Gosselin, A. Trudel, MJ. 1986. Root-zone temperature effects on pepper. Journal of the American Society for Horticultural Science 111, 220-224. 38. Gilland, B. 2002. World population and food supply Can food production keep pace with population growth in the next half-century? Food Policy. 27: 47-63. 39. Hashimoto, Y., and Takatsuzi, M., 1984. The significances and technical problems of vegetable factory. The Heredity(in Japanese). 38:4-8. 40. Hanan , J.J and Hughes, H.E. 1978. Effect of salinity in water supplies on green-house rose production. J. Am. Soc. Hort. Sci. 103:694-699. 41. Hopkins,W.G.,andN.P.A.Hunter2008.Introductiontoplantphysiology.4thed.,London:WileyandSon. 42. He, J. and S. K Lee. 1996. Effects of different root-zone temperatures and growth irradiances on photosynthesis and productivity of three lettuce cultivars (Lactuca sativa L.) growth under tropical aerial conditions. In: Second Asia Pacific Conference on Plant Physiology 20-22 August 1996, Pan Pacific Glenmarie Resort, Shah Alam, Malaysia. 43. Hicklenton, P.R., and M.S.Wolynetz. 1987. Influence of light- and dark-period air temperatures and root temperature on growth of lettuce in nutrient flow systems. J.Am. Soc. Hort. Sci. 112:932-935. 44. Ikeda, H. and Osawa, T. 1984. Lettuce growth as influenced by N source and temperature of the nutrient solution, pp. 273-284. IN: Proceedings of the 6th International Congress of Soilness Culture. 45. Incrocci, L., Lorenzini, O., Malorgio, F., Pardossi, A. and Tognoni, F. 2001. Valutazione quanti-qualitativa della produzione di rucola (Eruca vesicaria L. Cav.) basilico (Ocimum basilicum L.) ottenuta in suoloe floating system utilizzando acque irrigue con differenti contenuti di NaCl. Italus Hortus 8(6):92-97. 46. Jeusen, W., and A. D. McLaren, 1960: Uptake of protein by plant cells--the possible occurrence of pinocytosis in plants. Exper. Cell 1Xes. 19, 414---417. 47. Jones, J.P. 1987. Disease thresholds for downy mildew and target leafspot of cucurbits and late blight of tomato. Plant Dis. Rep. 62:798-802. 48. Jensen, M.H. and A.J. Malter. 1995. Protected agriculture, A global review. World Blank Tech. Paper No.253. The World Blank, Washington D.C. 49. Jolliet, O. and B.J.,Bailey, 1992. The effect of climate on tomato transpiration in greenhouse: measurements and models comparison. Agric. For. Meteorol., 58:43-63. 50. Kozai,T.,C.Chun,K.Ohyama.2004.Closedsystemswithlampsforcommercial productiontransplantssingminimalresources.ActaHort.630:239-254. 51. Kozai, T., K., Ohyama, and C. Chun, 2006. Commercialized closed systems with artificial lighting for plant production. Acta Hort. 711:61-70. 52. Kozai, T., K. Ohyama, Y. Tong, P. Tongbai, and N. Nishioka. 2009. Integrative environment control using heat pumps for reductions in energy consumption and CO2gas emission, humidity control and air circulation, International ISHS Symposium (GreenSys2009), Quebec, Canada, Acta Horticulturae. 101 pp 53. Landsberg, J.J., Beadle, C.L., Biscoe, P.V., Butler, D.R., Davidson, B., Incoll, L.D., James, G.B., Jarvis, P.G., Martin, P.J., Neilson, R.E., Powell, D.B.B., Slack, E.M., Thorpe, M.R., Turner, N.C., Warrit, B. and Watts, W.R., 1975. Diurnal energy, water and CO2 exchanges in an apple (Malus pu~ila) orchard. J. Appl. Ecol., 12: 659:684. 54. Lee, S. K and S. C., Cheong, 1996. Inducing head formation of iceberg lettuce (Lactuca sativa L.) in the tropics through root-zone temperature control. Tropical Agricultural. 73,34-42 55. Marsh, L.S. 1987. A model of greenhouse hydroponic lettuce production:Daily selection of optimum air temperatures and comparison of greenhouse covers. PhD diss. Cornell Univ., Ithaca, N.Y. 56. Moorby,J., andC.J.Graves.1980.Rootandairtemperatureeffectsongrowthandyieldoftomatoesandlettuce.ActaHort98:29-37. 57. Pereira, H. C. 1993. Food production and population growth. Land Use Policy. July: 187-190. 58. Peterson, U., and R. Aunap. 1998. Changes in agricultural land use in Estonia in the 1990s detected with multitemporal Landsat MSS imagery. Landscape and Urban Planning. 41: 193-201. 59. Pimentel, D., and M. Pimentel. 2008. Human Population Growth. Ecological Engineering. 1907-1912. 60. Rosegrant, M、W., M、S、Paisner, S、Meijer, and J、Witcover . 2001. Global Food Projection to 2020 Emerging Trends and Alternative Futures, International Food Policy Research Institute. 61. Roberts, A. N. and Renwoth, A. L., 1956. Growth and composition of strawberry plant in relation to root temperature and intensity of nutrition. Proc. Amer. Soc. Hort. Sci. 68: 677-678. 62. Santamaria, P. and Valenzano, V. 2001. La qualita degli ortaggi allevati senza suolo. Italus Hortus 8(6):31-38. 63. Scaife, M. A. 1973. The early relative growth of six lettuce cultivars as affected by temperatures. Annu. Applied Biology 74, 119-128. 64. Seginer, I., G. Shina, L. Albright, and L. Marsh. 1991. Optimal setpoints for greenhouse lettuce. J. Agr. Eng. Res. 49(3):209-226. 65. Taiz, L. and Zeiger, E. Fisiologia vegetal. 3.edition. Porto Alegre, Artmed, 2004. 66. Tesi, R., Lenzi, A., Lombardi, P. 2003. Effect of different O2 levels on leafy vegetables in a floatingsystem. Act Hort. 614 (2):631-637. 67. Tompson, H., R. Langhans, A.J. Both, and L. Albright. 1998. Shoot and root temperature effects on lettuce growth in floating hydroponic system. American Society for Horticultural Science(USA). 123(3): 361-364. 68. Unger, P.W. and Danielson, R.E., 1967. Water relations and growth of beans (Phaseolus vulgaris L.) as influenced by nutrient solution temperatures. Agron. J., 59: 143-146. 69. Wurr, D.C.E., J.R. Fellows. and A.J. Hambidge. 1992. Environmental factors influencing head density and diameter of crisp lettuce cv. Saladin. J. Hort. Sci. 67(3):395-401. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19637 | - |
| dc.description.abstract | 萵苣為溫帶作物,建議的生長氣溫在23℃或以下,此為台灣夏季需仰賴進口,也是使用人工光型植物工廠栽培時降溫成本高的原因。本研究旨在探討於植物工廠內使用冰水機是否允許波士頓萵苣(Lactuca sativa L.) 於較高的環境溫度下栽培,以利成本的降低。本研究首先探討潮汐式淹灌(Ebb and Flood, E&F)與湛液式養液循環法 (Deep Flow Technique, DFT)對栽培的影響與使用前者時適當的淹灌頻度,其次確立養液有控溫時的氣溫的上限,也對養液穩定控溫對於提高產能的重要性提出栽培結果的證明,也對於傳統育苗方式提出修改的建議,亦證明新育苗方式的優越性。
相同養液溫度 (20℃) 下,氣溫由23升至 28℃可使鮮重提升且降低降溫成本;育成期維持氣溫/液溫為28/23與28/20之組合在收穫鮮重上無顯著影響,但前者之冰水機能耗可減少約 80%,雖空調成本略升,但兩項成本合計,前者比後者約降低 20%。冰水機性能若能提高,兩者的差異會縮小。 本研究建議栽培波士頓萵苣可使用潮汐式淹灌系統,以變頻空調維持室內氣溫於28℃,以冰水機調控養液溫度於23℃,每 15 分鐘啟動一次循環泵浦,漲潮與落潮時間各半,室內二氧化碳濃度維持於 1200 ppm,養液pH 與EC 分別維持於6.0 與1.3 mS.cm-1。播種後育苗期14 天 (LED,PPF 為150 μmol.m-2.s-1,給光24 小時),育成期21 天(T5 螢光燈管、色溫6500 K、PPF為 200 μmol.m-2.s-1,給光16小時),總計 35 天可得約 105 g 的鮮重且在為期21 天的育成期中內循環風扇、抽水泵浦、人工光源、空調與冰水機等五種耗電設備合計之能源成本約為 0.122 元g-1。如果循環風扇及人工光源的效率與冰水機的性能係數得以提高,且能將環控室的空間充分運用來提高產能,能源成本可降為約0.048元 g-1。 | zh_TW |
| dc.description.abstract | Taiwan need to import lots of lettuce during the summer season due to the fact that lettuce prefer cool temperature (less than 23℃) to grow. It is also the reason that the plant factory with artificial lighting (PFAL) required lots of energy to remove the heat load. The focus of this study is to investigate on temperature of aerial and root zone environmentof semi-head lettuce (Boston or Butter head lettuce, Lactuca sativa L.). The hypothesis is that by applying chiller to reduce temperature (T) of nutrient solution allows lettuce to be grown at higher temperature, leading to lower energy cost. Two circulating systems include Ebb and Flood (E&F) and Deep Flow Technique (DFT) were investigated. Proper frequency when using E&F also under investigation. When the root zone can be controlled at 20℃, the upper limit of aerial T was found. Some evidence was found regards keeping root zone T stable is very important to get high yield. A modified plug tray was developed to improveyield.
At same root zone T, aerial T increase from 23 to 28℃enhanceplant growth leading to increase of fresh weight and reduce energy cost. There is no significant difference on fresh weight when aerial/root zone T are at 28/23 or 28/20. However, the 28/23 treatment reduced the energy consumption of chiller by 80% but increase energy consumption of AC, leading to a 20% reduction of totalenergy consumption in removing heat. If the COP of the chiller can be improved, the difference among two treatments can be minimized. The suggested protocol to grow Boston lettuce is as follows: Ebb and Flood system, chiller and AC system with inverter should be used. The nutrient solution should be controlled at 23℃ using chiller, the UP and DOWN time of recirculating pump can be set at 7.5 minutes each, indoor CO2 concentration kept at 1200 ppm. The pH and EC are 6.0 and 1.2 mS.cm-1. LED is used at Seedling stage, the PPF is 150 with continuous light for 14 days. Tubular florescent lamps with color temperature of 6500 K are used for mature stage production after transplanting. The PPF is 200 and light period is 16 hours per day for 21 days. At DAS equals 35, the expected harvest fresh weight is around 105 g. The total electricity costs of circulating fans, pump, artificial light, AC and chiller for 21 days from transplanting to harvest is 0.122 NT$ per gram of produce. Assuming the efficiency of circulating fans, artificial lamps, COP of chiller and amount of production area can be increased, the energy cost drop to 0.048 NT$ per gram of produce. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T02:10:11Z (GMT). No. of bitstreams: 1 ntu-105-R02631049-1.pdf: 7373022 bytes, checksum: 26bebb09a1f408e5fd402016312076fd (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 摘要 II
圖目錄 VII 表目錄 XII 第一章 前言與研究目的 1 1.1前言 1 1.2 研究目的 2 第二章 文獻探討 3 2.1 萵苣概述 3 2.2 全球農業所面臨的挑戰 4 2.2.1台灣農業所面臨的挑戰 6 2.3植物工廠 8 2.3.1 植物工廠緣起 8 2.3.2 植物工廠定義 11 2.3.3 植物工廠之分類 12 2.4 土耕與水耕 14 2.5 影響植物之風、光、水、養、氣 15 2.5.1 光量 15 2.5.2 光週期 16 2.5.3 栽培系統 18 2.5.4 栽培作物地下部環境的狀態 (水、養) 23 2.5.5 栽培作物地上部環境的狀態 (風、氣) 28 第三章 材料與方法 39 3.1 試驗環境 39 3.1.1 台大生機系環控室 39 3.1.2 冰水機系統 40 3.1.3 潮汐式灌溉循環系統架構之設計 41 3.1.4 試驗養液成分 43 3.1.5 人工光源與光量分佈 44 3.2 環境控制 46 3.2.1 可程式控制器 46 3.2.2 養液溫度感測 47 3.2.3 二氧化碳感測控制 47 3.2.4 溫濕度感測 48 3.2.5 溫度控制 49 3.3 試驗設備與儀器 50 3.4 測量方法 52 3.5 光子產能、電力產能與年產能 53 3.6 研究方法 55 3.6.1調控養液溫度時允許的空氣溫度上限 55 3.6.2 不同養液循環系統之比較 56 3.6.3 不同育苗方式之比較 58 3.6.4 不同氣溫與養液溫度組合之比較 60 3.6.5 兩種冰水機之比較 63 3.6.6 不同淹灌頻度之比較 64 第四章 結果與討論 67 4.1 調控養液溫度時允許的空氣溫度上限 67 4.2 不同養液循環系統之比較 70 4.3 不同育苗方式之比較 (使用修改的育苗用穴格並予以墊高) 74 4.4 不同氣溫與養液溫度組合之比較 78 4.5 兩種冰水機之比較 82 4.6 兩種淹溉頻度之比較 86 4.7 波士頓萵苣氣溫、養液溫度與栽培方式之討論 90 4.8 光子產能、電力產能與年產能 92 4.9 育成期各項耗能設備之能耗分析及模擬情境 94 第五章 結論 103 第六章 參考文獻 107 | |
| dc.language.iso | zh-TW | |
| dc.title | 降低潮汐式淹灌系統之養液溫度允許於較高氣溫環境下栽培波士頓萵苣 | zh_TW |
| dc.title | Reducing root zone temperature of an ebb and flood system allowing lettuce to be grown in a high temperature environment | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃振康(Chen-Kang Huang),羅筱鳳(Hsiao-Feng Lo) | |
| dc.subject.keyword | 植物工廠,波士頓萵苣,潮汐式淹灌系統,養液溫度, | zh_TW |
| dc.subject.keyword | Plant Factory,Boston-Lettuce,Ebb and Flood,Nutrient Temperature, | en |
| dc.relation.page | 113 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2016-01-27 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 7.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
