請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19606
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 薛文証(Wen-Jeng Hsueh) | |
dc.contributor.author | Yu-Hsiang Cheng | en |
dc.contributor.author | 鄭宇翔 | zh_TW |
dc.date.accessioned | 2021-06-08T02:08:09Z | - |
dc.date.copyright | 2016-02-24 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-01-31 | |
dc.identifier.citation | [1] G. E. Moore, “Cramming more components onto integrated circuits,” Electronics 38, 114 (1965).
[2] E. Abe, Y. Yan and S. J. Pennycook, “Quasicrystals as cluster aggregates,” Nature Mater. 3, 759 (2004). [3] B. S. Williams, “Terahertz quantum-cascade lasers,” Nature Photon. 1, 517 (2007). [4] S.-W. Wang, X. Chen, W. Lu, M. Li and H. Wang, “Fractal independently tunable multichannel filters,” Appl. Phys. Lett. 90, 211113 (2007). [5] W. J. Hsueh and S. J. Wun, “Simple expressions for the maximum omnidirectional bandgap of bilayer photonic crystals,” Opt. Lett. 36, 1581 (2011). [6] Y. Akahane, T. Asano, B.-S. Song and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944 (2003). [7] Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679 (1998). [8] A. Yariv and P. Yeh, Optical Waves in Crystals : Propagation and Control of Laser Radiation Wiley, New York, (1984). [9] Y. V. Shvyd'ko, S. Stoupin, A. Cunsolo, A. H. Said and X. Huang, “High-reflectivity high-resolution X-ray crystal optics with diamonds,” Nature Phys. 6, 196 (2010). [10] J. Ristić, E. Calleja, A. Trampert, S. Fernández-Garrido, C. Rivera, U. Jahn and K. H. Ploog, “Columnar AlGaN/GaN nanocavities with AlN/GaN Bragg reflectors grown by molecular beam epitaxy on Si(111),” Phys. Rev. Lett. 94, 146102 (2005). [11] Y. Taniyasu, M. Kasu and T. Makimoto, “An aluminium nitride light-emitting diode with a wavelength of 210 nanometres,” Nature 441, 325 (2006). [12] M. I. Molina and Y. S. Kivshar, “Nonlinear localized modes at phase-slip defects in waveguide arrays,” Opt. Lett. 33, 917 (2008). [13] W.-X. Yang, Y.-Y. Lin, T.-D. Lee, R.-K. Lee and Y. S. Kivshar, “Nonlinear localized modes in bandgap microcavities,” Opt. Lett. 35, 3207 (2010). [14] J. J. Paggel, T. Miller and T.-C. Chiang, “Quantum-well states as Fabry-Pérot modes in a thin-film electron interferometer,” Science 283, 1709 (1999). [15] X.-L. Zhang, J.-F. Song, J. Feng and H.-B. Sun, “Spectral engineering by flexible tunings of optical Tamm states and Fabry–Perot cavity resonance,” Opt. Lett. 38, 4382 (2013). [16] S. Kalusniak, H. J. Wünsche and F. Henneberger, “Random semiconductor lasers: scattered versus Fabry-Perot feedback,” Phys. Rev. Lett. 106, 013901 (2011). [17] G. Liang, P. Han and H. Wang, “Narrow frequency and sharp angular defect mode in one-dimensional photonic crystals from a photonic heterostructure,” Opt. Lett. 29, 192 (2004). [18] A. A. Sukhorukov, “Reflectionless potentials and cavities in waveguide arrays and coupled-resonator structures,” Opt. Lett. 35, 989 (2010). [19] F. Fedele, J. Yang and Z. Chen, “Defect modes in one-dimensional photonic lattices,” Opt. Lett. 30, 1506 (2005). [20] M. Kohmoto, B. Sutherland and K. Iguchi, “Localization of optics: Quasiperiodic media,” Phys. Rev. Lett. 58, 2436 (1987). [21] L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nature Photon. 4, 165 (2010). [22] V. Grigoriev and F. Biancalana, “Exact analytical representations for broadband transmission properties of quarter-wave multilayers,” Opt. Lett. 36, 3774 (2011). [23] R. W. Peng, Y. M. Liu, X. Q. Huang, F. Qiu, M. Wang, A. Hu, S. S. Jiang, D. Feng, L. Z. Ouyang and J. Zou, “Dimerlike positional correlation and resonant transmission of electromagnetic waves in aperiodic dielectric multilayers,” Phys. Rev. B 69, 165109 (2004). [24] W. J. Hsueh, C. H. Chang, Y. H. Cheng and S. J. Wun, “Effective Bragg conditions in a one-dimensional quasicrystal,” Opt. Express 20, 26618 (2012). [25] F. A. B. F. de Moura and M. L. Lyra, “Delocalization in the 1D Anderson model with long-range correlated disorder,” Phys. Rev. Lett. 81, 3735 (1998). [26] H. Shima, T. Nomura and T. Nakayama, “Localization-delocalization transition in one-dimensional electron systems with long-range correlated disorder,” Phys. Rev. B 70, 075116 (2004). [27] M. Dulea, M. Severin and R. Riklund, “Transmission of light through deterministic aperiodic non-Fibonaccian multilayers,” Phys. Rev. B 42, 3680 (1990). [28] Y. H. Cheng and W. J. Hsueh, “High-Q filters with complete transmission by quasi-periodic dielectric multilayers,” Opt. Lett. 38, 3631 (2013). [29] R. Merlin, K. Bajema, R. Clarke, F. Y. Juang and P. K. Bhattacharya, “Quasiperiodic GaAs-AlAs heterostructures,” Phys. Rev. Lett. 55, 1768 (1985). [30] R. W. Peng, X. Q. Huang, F. Qiu, M. Wang, A. Hu, S. S. Jiang and M. Mazzer, “Symmetry-induced perfect transmission of light waves in quasiperiodic dielectric multilayers,” Appl. Phys. Lett. 80, 3063 (2002). [31] S. Chugh, M. Man, Z. Chen and K. J. Webb, “Ultra-dark graphene stack metamaterials,” Appl. Phys. Lett. 106, 061102 (2015). [32] Y. H. Cheng, C. H. Chen, K. Y. Yu and W. J. Hsueh, “Extraordinary light absorptance in graphene superlattices,” Opt. Express 23, 28755 (2015). [33] C. Mou, R. Arif, A. S. Lobach, D. V. Khudyakov, N. G. Spitsina, V. A. Kazakov, S. Turitsyn and A. Rozhin, “Poor fluorinated graphene sheets carboxymethylcellulose polymer composite mode locker for erbium doped fiber laser,” Appl. Phys. Lett. 106, 061106 (2015). [34] T. Stauber, G. Gómez-Santos and F. J. G. de Abajo, “Extraordinary absorption of decorated undoped graphene,” Phys. Rev. Lett. 112, 077401 (2014). [35] H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96, 111112 (2010). [36] A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nature Mater. 6, 183 (2007). [37] T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-Infrared applications,” ACS Nano 8, 1086 (2014). [38] F. Bonaccorso, Z. Sun, T. Hasan and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nature Photon. 4, 611 (2010). [39] Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6, 3677 (2012). [40] F. H. L. Koppens, D. E. Chang and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light–matter interactions,” Nano Lett. 11, 3370 (2011). [41] F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320, 206 (2008). [42] Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nature Phys. 4, 532 (2008). [43] L. Prechtel, L. Song, D. Schuh, P. Ajayan, W. Wegscheider and A. W. Holleitner, “Time-resolved ultrafast photocurrents and terahertz generation in freely suspended graphene,” Nat. Commun. 3, 646 (2012). [44] X. Lin, P. Liu, Y. Wei, Q. Li, J. Wang, Y. Wu, C. Feng, L. Zhang, S. Fan and K. Jiang, “Development of an ultra-thin film comprised of a graphene membrane and carbon nanotube vein support,” Nat. Commun. 4, (2013). [45] C. S. R. Kaipa, A. B. Yakovlev, G. W. Hanson, Y. R. Padooru, F. Medina and F. Mesa, “Enhanced transmission with a graphene-dielectric microstructure at low-terahertz frequencies,” Phys. Rev. B 85, 245407 (2012). [46] A. Ludwig and K. J. Webb, “Dark materials based on graphene sheet stacks,” Opt. Lett. 36, 106 (2011). [47] J.-T. Liu, N.-H. Liu, J. Li, X. Jing Li and J.-H. Huang, “Enhanced absorption of graphene with one-dimensional photonic crystal,” Appl. Phys. Lett. 101, (2012). [48] Y. Zhang, Z. Wu, Y. Cao and H. Zhang, “Optical properties of one-dimensional Fibonacci quasi-periodic graphene photonic crystal,” Opt. Commun. 338, 168 (2015). [49] A. Madani and S. Roshan Entezar, “Optical properties of one-dimensional photonic crystals containing graphene sheets,” Physica B 431, 1 (2013). [50] Z. Tianrong, S. Xi, D. Yunyun, L. Xiaohan and Z. Jian, “Transfer matrix method for optics in graphene layers,” J. Phys.: Condens. Matter 25, 215301 (2013). [51] Y. Fan, Z. Wei, H. Li, H. Chen and C. M. Soukoulis, “Photonic band gap of a graphene-embedded quarter-wave stack,” Phys. Rev. B 88, 241403 (2013). [52] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059 (1987). [53] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987). [54] K. M. Ho, C. T. Chan and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152 (1990). [55] E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380 (1991). [56] T. F. Krauss, R. M. D. L. Rue and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature 383, 699 (1996). [57] J. N. Winn, Y. Fink, S. Fan and J. D. Joannopoulos, “Omnidirectional reflection from a one-dimensional photonic crystal,” Opt. Lett. 23, 1573 (1998). [58] E. Yablonovitch, “Engineered omnidirectional external-reflectivity spectra from one-dimensional layered interference filters,” Opt. Lett. 23, 1648 (1998). [59] X. Hu, Q. Gong, S. Feng, B. Cheng and D. Zhang, “Tunable multichannel filter in nonlinear ferroelectric photonic crystal,” Opt. Commun. 253, 138 (2005). [60] Y.-Y. Chen, Z.-M. Huang, Q. Wang, C.-F. Li and J.-L. Shi, “Photon tunnelling in one-dimensional metamaterial photonic crystals,” J. Opt. A: Pure Appl. Opt. 7, 519 (2005). [61] A. H. B. Ghasemi and H. Latifi, “Localized modes in a defectless photonic crystal waveguide at terahertz frequencies,” Opt. Lett. 37, 2727 (2012). [62] M. Enrique, “Exploiting aperiodic designs in nanophotonic devices,” Rep. Prog. Phys. 75, 036502 (2012). [63] M. de Boissieu, “Quasicrystals: model structures,” Nature Mater. 12, 692 (2013). [64] D. Shechtman, I. Blech, D. Gratias and J. W. Cahn, “Metallic phase with long-range orientational order and no translational symmetry,” Phys. Rev. Lett. 53, 1951 (1984). [65] L. Moretti and V. Mocella, “Two-dimensional photonic aperiodic crystals based on Thue-Morse sequence,” Opt. Express 15, 15314 (2007). [66] P. V. Korolenko, A. Y. Mishin and Y. V. Ryzhikova, “Scaling in the characteristics of aperiodic multilayer structures,” J. Opt. Technol. 79, 754 (2012). [67] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666 (2004). [68] A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332, 1291 (2011). [69] F. Schwierz, “Graphene transistors,” Nature Nanotech. 5, 487 (2010). [70] H. Liu, Y. Liu and D. Zhu, “Chemical doping of graphene,” J. Mater. Chem. 21, 3335 (2011). [71] X. He, “Tunable terahertz graphene metamaterials,” Carbon 82, 229 (2015). [72] X. He, Z.-Y. Zhao and W. Shi, “Graphene-supported tunable near-IR metamaterials,” Opt. Lett. 40, 178 (2015). [73] P. Tassin, T. Koschny and C. M. Soukoulis, “Graphene for terahertz applications,” Science 341, 620 (2013). [74] C. Cong and T. Yu, “Enhanced ultra-low-frequency interlayer shear modes in folded graphene layers,” Nat. Commun. 5, 5709 (2014). [75] L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76, 153410 (2007). [76] A. Yariv and P. Yeh, Photonics : Optical Electronics in Modern Communications Oxford University Press, New York, (2007). [77] P. Yeh, Optical Waves in Layered Media Wiley, Hoboken, NJ, (2005). [78] N. Narayana Rao, Elements of Engineering Electromagnetics Pearson Prentice Hall, Upper Saddle River, N.J., (2004). [79] W. J. Hsueh, S. J. Wun, Z. J. Lin and Y. H. Cheng, “Features of the perfect transmission in Thue-Morse dielectric multilayers,” J. Opt. Soc. Am. B 28, 2584 (2011). [80] S. Cheon, K. D. Kihm, J. S. Park, J. S. Lee, B. J. Lee, H. Kim and B. H. Hong, “How to optically count graphene layers,” Opt. Lett. 37, 3765 (2012). [81] D. Xin-Hua, L. Jiang-Tao, Y. Ji-Ren, L. Qing-Hua and L. Nian-Hua, “A new transfer matrix method to calculate the optical absorption of graphene at any position in stratified media,” Europhys. Lett. 109, 27002 (2015). [82] G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103, (2008). [83] H. Hajian, A. Soltani-Vala and M. Kalafi, “Characteristics of band structure and surface plasmons supported by a one-dimensional graphene-dielectric photonic crystal,” Opt. Commun. 292, 149 (2013). [84] K. V. Sreekanth, S. Zeng, J. Shang, K.-T. Yong and T. Yu, “Excitation of surface electromagnetic waves in a graphene-based Bragg grating,” Sci. Rep. 2, 737 (2012). [85] W. J. Hsueh, S. J. Wun and T. H. Yu, “Characterization of omnidirectional bandgaps in multiple frequency ranges of one-dimensional photonic crystals,” J. Opt. Soc. Am. B 27, 1092 (2010). [86] F. Qiu, R. W. Peng, X. Q. Huang, Y. M. Liu, M. Wang, A. Hu and S. S. Jiang, “Resonant transmission and frequency trifurcation of light waves in Thue-Morse dielectric multilayers,” Europhys. Lett. 63, 853 (2003). [87] R. Z. Qiu, C. H. Chen, Y. H. Cheng and W. J. Hsueh, “Localized persistent spin currents in defect-free quasiperiodic rings with Aharonov–Casher effect,” Phys. Lett. A 379, 1283 (2015). [88] Y. H. Cheng, C. H. Chang, C. H. Chen and W. J. Hsueh, “Bragg-like interference in one-dimensional double-period quasicrystals,” Phys. Rev. A 90, 023830 (2014). [89] C. H. Chen, Y. H. Cheng, C. W. Ko and W. J. Hsueh, “Enhanced spin-torque in double tunnel junctions using a nonmagnetic-metal spacer,” Appl. Phys. Lett. 107, 152401 (2015). [90] B. Michael and H. Kurt, “Band structure and coupled surface states in one-dimensional photonic crystals,” J. Opt. A: Pure Appl. Opt. 9, S339 (2007). [91] C. W. Tsao, W. J. Hsueh, C. H. Chang and Y. H. Cheng, “Quasi-Bragg conditions in Thue-Morse dielectric multilayers,” Opt. Lett. 38, 4562 (2013). [92] Y. H. Cheng, C. W. Tsao, C. H. Chen and W. J. Hsueh, “Strong localization of photonics in symmetric Fibonacci superlattices,” J. Phys. D: Appl. Phys. 48, 295101 (2015). [93] M. S. Vasconcelos and E. L. Albuquerque, “Transmission fingerprints in quasiperiodic dielectric multilayers,” Phys. Rev. B 59, 11128 (1999). [94] S. R. Entezar and H. Rahimi, “Transmission properties of a double-periodic quasi-crystal containing single-negative materials,” Opt. Commun. 284, 5833 (2011). [95] N.-h. Liu, “Propagation of light waves in Thue-Morse dielectric multilayers,” Phys. Rev. B 55, 3543 (1997). [96] K.-Y. Kim and B. Lee, “Application of complete tunneling to flat-top total transmission filters,” IEEE Photon. Technol. Lett. 20, 1057 (2008). [97] E. Macia, “Optical engineering with Fibonacci dielectric multilayers,” Appl. Phys. Lett. 73, 3330 (1998). [98] L. Carretero, M. Perez-Molina, P. Acebal, S. Blaya and A. Fimia, “Matrix method for the study of wave propagation in one-dimensional general media,” Opt. Express 14, 11385 (2006). [99] S. Golmohammadi, M. K. Moravvej-Farshi, A. Rostami and A. Zarifkar, “Narrowband DWDM filters based on Fibonacci-class quasi-periodic structures,” Opt. Express 15, 10520 (2007). [100] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008). [101] C. W. Tsao, Y. H. Cheng and W. J. Hsueh, “Localized modes in one-dimensional symmetric Thue-Morse quasicrystals,” Opt. Express 22, 24378 (2014). [102] A. B. Kuzmenko, E. van Heumen, F. Carbone and D. van der Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett. 100, 117401 (2008). [103] A. Ludwig and K. J. Webb, “Accuracy of effective medium parameter extraction procedures for optical metamaterials,” Phys. Rev. B 81, 113103 (2010). [104] A. Madani and S. Roshan Entezar, “Surface polaritons of one-dimensional photonic crystals containing graphene monolayers,” Superlattices Microstruct. 75, 692 (2014). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19606 | - |
dc.description.abstract | 本文中探討光在一維準週期介電質結構以及石墨烯介電質複合結構中之傳輸特性。研究中發現,當光在這些結構中傳輸時,會展現出異於傳統光子晶體結構之特性。本文中首先對雙周期準晶作研究。研究中發現這種準晶類型會擁有與傳統光子晶體中的布拉格條件類似的三條準布拉格條件,這三條準布拉格條件與圖厄-莫爾斯和斐波納契結構的準布拉格條件並不相同。並且,當電磁波處於準布拉格條件時,會經歷極大的反射。接著,本文提出了可以藉由圖厄-莫爾斯結構來製造出窄頻寬的共振。透過圖厄-莫爾斯結構原本的結構而不需要加任何變化,即刻產生出分散在頻譜上的窄頻寬的共振。並且這些共振點無論是數量還是品質因子都可以透過增加準週期階數來強化。最後,透過建立對稱性的斐波納契介電質結構的方式,本文中發現了類似法布里-珀羅共振的共振形式。而這些共振點擁有著與傳統的週期性缺陷結構不同的性質。關於光在對稱性的斐波納契介電質結構中的傳輸與中隔層距離的關係也將在本文中探討。
石墨烯與介電質複合材料在可見光與兆赫電磁波中的性質也將在本文中探討。本文發現在可見光下石墨烯與介電質複合材料的吸收會在周期數增加時有著不規律的變化。若是週期數增加,吸收在特定條件可能反而下降,而這與同長而言會規律變化的吸收材料不同。此外,本文發現這種變化還可以由化學位能控制。本文也發現兆赫電磁波中石墨烯與雙介電質複合材料擁有異於準晶體和光子晶體之準布拉格條件。這種準布拉格條件和光子帶隙同時與材料參數與石墨烯的化學位能有關。一旦施加在石墨烯上的化學位能改變,準布拉格條件也會跟著改變,此外,最大帶隙可以在異於半波長或四分之一波長的堆疊上找到。 | zh_TW |
dc.description.abstract | The propagation of electromagnetic waves in one-dimensional quasi-periodic dielectric and graphene-dielectric superlattices are studied in this thesis. It is found there are interesting properties in these structures, which differ from traditional photonic crystals. For double-period dielectric superlattices, there are three quasi-Bragg conditions with extreme reflectance which is analogous to the Bragg condition in traditional photonic crystals. Moreover, both the condition and number of the quasi-Bragg condition in double-period superlattices differ from those in other quasi-periodic superlattices, such as Fibonacci and Thue-Morse superlattices. In addition, sharp resonance peaks from Thue-Morse dielectric superlattices are proposed in this thesis. It is found with the original Thue-Morse structure, resonances with sparse dispersion in the frequency range can be produced. Moreover, both the number and quality factor of these peaks increase when the generation order increases. Symmetric Fibonacci dielectric superlattices are also discussed in this thesis. It is discovered with a symmetric Fibonacci structure, Fabry-Pérot-like resonances can be found. These resonances have different properties from traditional defected bilayer superlattices.
The effect of the space layer in the structure on its transmission spectra is also studied in this thesis. Graphene-dielectric superlattices in visible light and graphene-double-dielectric superlattices in the terahertz range are analyzed in this study. It is found the graphene-dielectric superlattices in visible light display a non-monotonic absorption behavior when the period number increases. When the period of the structure increases, the absorption of the structure may decrease under certain conditions. Such a phenomenon differs from the traditional absorptive materials that behave in a monotonic way. Moreover, the unusual absorption behavior can be controlled using chemical potential. Quasi-Bragg conditions in the graphene-double-dielectric superlattices in the terahertz range, which differ from the Bragg condition in traditional photonic crystals and the quasi-Bragg condition in quasi-periodic superlattices, are proposed. It is found the quasi-Bragg condition and photonic bandgap in graphene-double-dielectric superlattices depend on both the structure parameters and the chemical potential of the graphene. When the chemical potential applied to the graphene sheets is changed, the quasi-Bragg condition in the structure is changed. Moreover, the maximum gap can be found with the layer thicknesses of the dielectric layers that differ from traditional quarter-wave or half-wave thickness. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T02:08:09Z (GMT). No. of bitstreams: 1 ntu-105-F99525042-1.pdf: 1956470 bytes, checksum: 9d498326d126caf9299beca37f8b0655 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 摘要 i
Abstract iii Contents v List of Figures vii List of Symbols xii List of Abbreviations xv Chapter 1 Introduction 1 1.1 Background and study goals 1 1.2 Literature review 6 1.3 Chapter outlines 10 Chapter 2 Electromagnetic Waves in Finite Superlattices 12 2.1 Electromagnetic theory 12 2.1.1 Maxwell’s equations 12 2.1.2 Wave equations and boundary conditions 15 2.2 Light propagation in finite superlattices 17 2.2.1 Dielectric superlattices 17 2.2.2 Graphene-dielectric superlattices 22 2.2.3 Principles of reflection, transmission and absorption 27 Chapter 3 Electromagnetic Waves in Infinite Superlattices 30 3.1 Bloch theory 30 3.2 Light propagation in infinite dielectric superlattices 32 3.3 Light propagation in infinite graphene-dielectric superlattices 34 Chapter 4 Light Localization in Dielectric Quasi-Periodic Superlattices 36 4.1 Introduction of quasi-periodic superlattices 36 4.2 Quasi-Bragg interference in double-period superlattices 38 4.3 Sharp resonances from Thue-Morse superlattices 52 4.4 Fabry-Pérot Localization from Symmetric Fibonacci superlattices 62 Chapter 5 Light in Graphene-Dielectric Superlattices 76 5.1 Introduction 76 5.2 Light propagation in graphene-dielectric superlattices 78 5.3 Bragg condition in photonic crystals doped with graphene 91 Chapter 6 Conclusions 102 6.1 Summary 102 6.2 Suggestion for future research 105 References 106 | |
dc.language.iso | en | |
dc.title | 介電質與石墨烯超晶格結構之光學特性 | zh_TW |
dc.title | Optical Properties of Dielectric and Graphene Superlattices | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 李佳翰(Jia-Han Li),黃俊穎(Chun-Ying Huang),江海邦(Hai-Pang Chiang),黃智賢(Jih-Shang Hwang),李正中(Cheng-Chung Lee) | |
dc.subject.keyword | 光子能隙結構,布拉格反射,準週期,共振現象,石墨烯,吸收, | zh_TW |
dc.subject.keyword | Photonic bandgap materials,Bragg reflectors,Quasicrystal,Resonator,Graphene,Absorption, | en |
dc.relation.page | 119 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2016-02-01 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
顯示於系所單位: | 工程科學及海洋工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 1.91 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。