請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19604
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉興華(Shing-Hwa Liu) | |
dc.contributor.author | Chen-Yuan Chiu | en |
dc.contributor.author | 邱振源 | zh_TW |
dc.date.accessioned | 2021-06-08T02:08:02Z | - |
dc.date.copyright | 2016-02-26 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-02-01 | |
dc.identifier.citation | Allan LL, Sherr DH. Disruption of human plasma cell differentiation by an environmental polycyclic aromatic hydrocarbon: a mechanistic immunotoxicological study. Environ Health. 2010;9:15.
Arnould JP, Verhoest P, Bach V, Libert JP, Belegaud J. Detection of benzo[a]pyrene-DNA adducts in human placenta and umbilical cord blood. Hum Exp Toxicol. 1997;16(12):716-721. Asakura A, Seale P, Girgis-Gabardo A, Rudnicki MA. Myogenic specification of side population cells in skeletal muscle. J Cell Biol. 2002;159(1):123-134. Atkins RC, Zimmet P. Diabetic kidney disease: Act now or pay later. Nephrol Dial Transplant. 2010;25: 331–333. Baeza-Raja B, Muñoz-Cánoves P. p38 MAPK-induced nuclear factor-kappaB activity is required for skeletal muscle differentiation: role of interleukin-6. Mol Biol Cell. 2004;15(4):2013-2026. Bakkar N, Guttridge DC. NF-kappaB signaling: a tale of two pathways in skeletal myogenesis. Physiol Rev. 2010;90(2):495-511. Bakkar N, Wang J, Ladner KJ, Wang H, Dahlman JM, Carathers M, Acharyya S, Rudnicki MA, Hollenbach AD, Guttridge DC. IKK/NF-kappaB regulates skeletal myogenesis via a signaling switch to inhibit differentiation and promote mitochondrial biogenesis. J Cell Biol. 2008;180(4):787-802. Barbieri O, Ognio E, Rossi O, Astigiano S, Rossi L. Embryotoxicity of benzo(a)pyrene and some of its synthetic derivatives in Swiss mice. Cancer Res. 1986;46(1):94-98. Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, Ross RR, Garry PJ, Lindeman RD. Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol. 1998;147(8):755-763. Beccafico S, Riuzzi F, Puglielli C, Mancinelli R, Fulle S, Sorci G, Donato R. Human muscle satellite cells show age-related differential expression of S100B protein and RAGE. Age (Dordr). 2011;33(4):523-541. Bernstein IM, Plociennik K, Stahle S, Badger GJ, Secker-Walker R. Impact of maternal cigarette smoking on fetal growth and body composition. Am J Obstet Gynecol. 2000;183(4):883-886. Bischoff HA, Borchers M, Gudat F, Duermueller U, Theiler R, Stähelin HB, Dick W. In situ detection of 1,25-dihydroxyvitamin D3 receptor in human skeletal muscle tissue. Histochem J. 2001;33(1):19-24. Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, Stitt TN, Yancopoulos GD, Glass DJ. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science. 2001;294:1704-1708. Bonaldo P, Sandri M. Cellular and molecular mechanisms of muscle atrophy. Dis Model Mech. 2013;6(1):25-39. Boström CE, Gerde P, Hanberg A, Jernström B, Johansson C, Kyrklund T, Rannug A, Törnqvist M, Victorin K, Westerholm R. Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ Health Perspect. 2002;110 Suppl 3:451-488. Bosy-Westphal A, Müller MJ. Identification of skeletal muscle mass depletion across age and BMI groups in health and disease--there is need for a unified definition. Int J Obes (Lond). 2015;39(3):379-386. Bui QQ, Tran MB, West WL. A comparative study of the reproductive effects of methadone and benzo(a)pyrene in the pregnant and pseudopregnant rat. Toxicology. 1986;42(2-3):195-204. Burnes LA, Kolker SJ, Danielson JF, Walder RY, Sluka KA. Enhanced muscle fatigue occurs in male but not female ASIC3-/- mice. Am J Physiol Regul Integr Comp Physiol. 2008;294(4):R1347-R1355. Burton LA, Sumukadas D. Optimal management of sarcopenia. Clin Interv Aging. 2010;5:217-228. Chakraborti D, Mukherjee SC, Pati S, Sengupta MK, Rahman MM, Chowdhury UK, Lodh D, Chanda CR, Chakraborti AK, Basu GK. Arsenic groundwater contamination in Middle Ganga Plain, Bihar, India: a future danger? Environ Health Perspect. 2003;111(9):1194-1201. Chandran R, Knobloch TJ, Anghelina M, Agarwal S. Biomechanical signals upregulate myogenic gene induction in the presence or absence of inflammation. Am J Physiol Cell Physiol. 2007;293(1):C267-C276. Chargé SB, Rudnicki MA. Cellular and molecular regulation of muscle regeneration. Physiol Rev. 2004;84(1):209-238. Charles GD, Bartels MJ, Zacharewski TR, Gollapudi BB, Freshour NL, Carney EW. Activity of benzo[a]pyrene and its hydroxylated metabolites in an estrogen receptor-alpha reporter gene assay. Toxicol Sci. 2000;55(2):320-326. Chen LK, Liu LK, Woo J, Assantachai P, Auyeung TW, Bahyah KS, Chou MY, Chen LY, Hsu PS, Krairit O, Lee JS, Lee WJ, Lee Y, Liang CK, Limpawattana P, Lin CS, Peng LN, Satake S, Suzuki T, Won CW, Wu CH, Wu SN, Zhang T, Zeng P, Akishita M, Arai H. Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia. J Am Med Dir Assoc. 2014;15(2):95-101 Chen S, Nguyen N, Tamura K, Karin M, Tukey RH. The role of the Ah receptor and p38 in benzo[a]pyrene-7,8-dihydrodiol and benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide-induced apoptosis. J Biol Chem. 2003;278(21):19526-19533. Chen YJ, Sheu ML, Tsai KS, Yang RS, Liu SH. Advanced glycation end products induce peroxisome proliferator-activated receptor γ down-regulation-related inflammatory signals in human chondrocytes via Toll-like receptor-4 and receptor for advanced glycation end products. PLoS One. 2013;8(6):e66611. Chiarelli F, de Martino M, Mezzetti A, Catino M, Morgese G, Cuccurullo F, Verrotti A. Advanced glycation end products in children and adolescents with diabetes: relation to glycemic control and early microvascular complications. J Pediatr. 1999;134(4): 486-491. Choi H, Rauh V, Garfinkel R, Tu Y, Perera FP. Prenatal exposure to airborne polycyclic aromatic hydrocarbons and risk of intrauterine growth restriction. Environ Health Perspect. 2008;116(5):658-665. Christensen DL, Kapur A, Bygbjerg IC. Physiological adaption to maternal malaria and other adverse exposure: low birth weight, functional capacity, and possible metabolic disease in adult life. Int J Gynaecol Obstet. 2011;115 Suppl 1:S16-9. Clark BC, Manini TM. Sarcopenia =/= dynapenia. J Gerontol A Biol Sci Med Sci. 2008;63(8):829-834. Cohen S, Nathan JA, Goldberg AL. Muscle wasting in disease: molecular mechanisms and promising therapies. Nat Rev Drug Discov. 2015;14(1):58-74. Dejmek J, Solanský I, Benes I, Lenícek J, Srám RJ. The impact of polycyclic aromatic hydrocarbons and fine particles on pregnancy outcome. Environ Health Perspect. 2000;108(12):1159-1164. Dionne IJ, Kinaman KA, Poehlman ET. Sarcopenia and muscle function during menopause and hormone-replacement therapy. J Nutr Health Aging. 2000;4(3):156-161. Doran P, Donoghue P, O'Connell K, Gannon J, Ohlendieck K.Proteomic profiling of pathological and aged skeletal muscle fibres by peptide mass fingerprinting. Int J Mol Med. 2007;19(4):547-564. Duarte-Salles T, Mendez MA, Pessoa V, Guxens M, Aguilera I, Kogevinas M, Sunyer J. Smoking during pregnancy is associated with higher dietary intake of polycyclic aromatic hydrocarbons and poor diet quality. Public Health Nutr. 2010;3(12):2034-2043. Endutkin AV, Sidorenko VS, Zharkov DO. Genotoxicity of a carcinogenic metabolite of benzo[a]pyrene for cells of neuronal differentiation lineage. Biopolym and Cell. 2012;28(4):298-301. Engelen L, Stehouwer CD, Schalkwijk CG. Current therapeutic interventions in the glycation pathway: evidence from clinical studies. Diabetes Obes Metab. 2013;15(8):677-689. Foos V, Varol N, Curtis BH, Boye KS, Grant D, Palmer JL, McEwan P. Economic impact of severe and non-severe hypoglycemia in patients with Type 1 and Type 2 diabetes in the United States. J Med Econ. 2015:1-39. Fry AC. The role of resistance exercise intensity on muscle fibre adaptations. Sports Med. 2004;34(10):663-679. Galien R, Garcia T. Estrogen receptor impairs interleukin-6 expression by preventing protein binding on the NF-kappaB site. Nucleic Acids Res. 1997;25(12):2424-2429. Glass DJ. Molecular mechanisms modulating muscle mass. Trends Mol Med. 2003;9:344-350. Goodpaster BH, Park SW, Harris TB, Kritchevsky SB, Nevitt M, Schwartz AV, Simonsick EM, Tylavsky FA, Visser M, Newman AB. The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J Gerontol A Biol Sci Med Sci. 2006;61(10):1059-1064. Gr?ntved A, Pan A, Mekary RA, Stampfer M, Willett WC, Manson JE, Hu FB. Muscle-strengthening and conditioning activities and risk of type 2 diabetes: a prospective study in two cohorts of US women. PLoS Med. 2014;11(1): e1001587. Hahl J, Hämäläinen H, Sintonen H, Simell T, Arinen S, Simell O. Health-related quality of life in type 1 diabetes without or with symptoms of long-term complications. Qual Life Res. 2002;11(5):427-436. Hanssen NM, Beulens JW, van Dieren S, Scheijen JL, van der A DL, Spijkerman AM, van der Schouw YT, Stehouwer CD, Schalkwijk CG.. Plasma advanced glycation end products are associated with incident cardiovascular events in individuals with type 2 diabetes: a case-cohort study with a median follow-up of 10 years (EPIC-NL). Diabetes. 2015;64(1):257-265. Haus JM, Carrithers JA, Trappe SW, Trappe TA. Collagen, cross-linking, and advanced glycation end products in aging human skeletal muscle. J Appl Physiol (1985). 2007;103(6):2068-2076. Hu Z, Wang H, Lee IH, Modi S, Wang X, Du J, Mitch WE. PTEN inhibition improves muscle regeneration in mice fed a high-fat diet. Diabetes. 2010;59(6): 1312-1320. Hughes VA, Frontera WR, Roubenoff R, Evans WJ, Singh MA. Longitudinal changes in body composition in older men and women: role of body weight change and physical activity. Am J Clin Nutr. 2002;76(2):473-481. Hwang JA, Lee JA, Cheong SW, Youn HJ, Park JH. Benzo(a)pyrene inhibits growth and functional differentiation of mouse bone marrow-derived dendritic cells. Downregulation of RelB and eIF3 p170 by benzo(a)pyrene. Toxicol Lett. 2007;169(1):82-90. Institute of Laboratory Animal Resources. Guide for the Care and Use of Laboratory Animals. Washington, DC:National Academy Press, 1996 Irwin RJ, Van Mouwerik M, Stevens L, Seese MD, Basham W. Environmental Contaminants Encyclopedia: benzo(a)pyrene entry. National Park Service. 1997. Available: http://www.nature.nps.gov/hazardssafety/toxic/benzoapy.pdf [accessed 27 August 2013] Jaitovich A, Angulo M, Lecuona E, Dada LA, Welch LC, Cheng Y, Gusarova G, Ceco E, Liu C, Shigemura M, Barreiro E, Patterson C, Nader GA, Sznajder JI. High CO2 Levels Cause Skeletal Muscle Atrophy via AMP-activated Kinase (AMPK), FoxO3a Protein, and Muscle-specific Ring Finger Protein 1 (MuRF1). J Biol Chem. 2015;290(14):9183-9194. Jang YN, Baik EJ. JAK-STAT pathway and myogenic differentiation. JAKSTAT. 2013;2(2):e23282. Jiang J, Chen P, Chen J, Yu X, Xie D, Mei C, Xiong F, Shi W, Zhou W, Liu X, Sun S, Zhang P, Yang X, Zhang Y, Zhang Y, Liang X, Zhang Z, Lin Q, Yu Y, Miyata T, Tian J, Liang M, Luo W, Xu X, Hou F.Accumulation of tissue advanced glycation end products correlated with glucose exposure dose and associated with cardiovascular morbidity in patients on peritoneal dialysis. Atherosclerosis. 2012;224(1):187-194. Kang SC, Lee BM. Effect of estrogen receptor (ER) on benzo[a]pyrene-DNA adduct formation in human breast cancer cells. J Toxicol Environ Health A. 2005;68(21):1833-1840. Kawai H, Nishino H, Kusaka K, Naruo T, Tamaki Y, Iwasa M. Experimental glycerol myopathy: a histological study. Acta Neuropathol. 1990;80(2):192-197. Kim TN, Park MS, Yang SJ, Yoo HJ, Kang HJ, Song W, Seo JA, Kim SG, Kim NH, Baik SH, Choi DS, Choi KM. Prevalence and determinant factors of sarcopenia in patients with type 2 diabetes: the Korean Sarcopenic Obesity Study (KSOS). Diabetes Care. 2010;33(7):1497-1499. Krause MP, Riddell MC, Hawke TJ. Effects of type 1 diabetes mellitus on skeletal muscle: clinical observations and physiological mechanisms. Pediatr Diabetes. 2011;12(4 Pt 1):345-364. Kung MH, Yukata K, O'Keefe RJ, Zuscik MJ. Aryl hydrocarbon receptor-mediated impairment of chondrogenesis and fracture healing by cigarette smoke and benzo(a)pyrene. J Cell Physiol. 2012;227(3):1062-1070. Lara-Pezzi E, Winn N, Paul A, McCullagh K, Slominsky E, Santini MP, Mourkioti F, Sarathchandra P, Fukushima S, Suzuki K, Rosenthal N. A naturally occurring calcineurin variant inhibits FoxO activity and enhances skeletal muscle regeneration. J Cell Biol. 2007;179(6):1205-1218. Lassila M, Seah KK, Allen TJ, Thallas V, Thomas MC, Candido R, Burns WC, Forbes JM, Calkin AC, Cooper ME, Jandeleit-Dahm KA. Accelerated nephropathy in diabetic apolipoprotein e-knockout mouse: role of advanced glycation end products. J Am Soc Nephrol. 2004;15(8):2125-2138. Lavasani M, Lu A, Thompson SD, Robbins PD, Huard J, Niedernhofer LJ. Isolation of muscle-derived stem/progenitor cells based on adhesion characteristics to collagen-coated surfaces. Methods Mol Biol. 2013;976:53-65. Lee WJ, Liu LK, Peng LN, Lin MH, Chen LK, ILAS Research Group. Comparisons of sarcopenia defined by IWGS and EWGSOP criteria among older people: results from the I-Lan longitudinal aging study. J Am Med Dir Assoc. 2013;14(7):528.e1-e7. Leenders M, Verdijk LB, van der Hoeven L, Adam JJ, van Kranenburg J, Nilwik R, van Loon LJ. Patients with type 2 diabetes show a greater decline in muscle mass, muscle strength, and functional capacity with aging. J Am Med Dir Assoc. 2013; 14(8):585-592. Lexell J. Human aging, muscle mass, and fiber type composition. J Gerontol A Biol Sci Med Sci. 1995;50(Spec):11-16. Little WC, Zile MR, Kitzman DW, Hundley WG, O'Brien TX, Degroof RC. The effect of alagebrium chloride (ALT-711), a novel glucose cross-link breaker, in the treatment of elderly patients with diastolic heart failure. J Card Fail. 2005; 11(3):191-195. Liu J, Masurekar MR, Vatner DE, Jyothirmayi GN, Regan TJ, Vatner SF, Meggs LG, Malhotra A. Glycation end-product cross-link breaker reduces collagen and improves cardiac function in aging diabetic heart. Am J Physiol Heart Circ Physiol. 2003;285(6):H2587-H2591. Lokireddy S, Mouly V, Butler-Browne G, Gluckman PD, Sharma M, Kambadur R, McFarlane C. Myostatin promotes the wasting of human myoblast cultures through promoting ubiquitin-proteasome pathway-mediated loss of sarcomeric proteins. Am J Physiol Cell Physiol. 2011; 301(6): C1316-C1324. Lu A, Proto JD, Guo L, Tang Y, Lavasani M, Tilstra JS, Niedernhofer LJ, Wang B, Guttridge DC, Robbins PD, Huard J. NF-κB negatively impacts the myogenic potential of muscle-derived stem cells. Mol Ther. 2012;20(3):661-668. Luo YB, Mitrpant C, Johnsen RD, Fabian VA, Fletcher S, Mastaglia FL, Wilton SD. Investigation of age-related changes in LMNA splicing and expression of progerin in human skeletal muscles. Int J Clin Exp Pathol. 2013;6(12):2778-2786. MacArthur C, Knox EG. Smoking in pregnancy: effects of stopping at different stages. Br J Obstet Gynaecol. 1988;95(6):551-555. MacKenzie KM, Angevine DM. Infertility in mice exposed in utero to benzo(a)pyrene. Biol Reprod. 1981;24(1):183-191. Madhavan ND and Naidu KA. Polycyclic aromatic hydrocarbons in placenta, maternal blood, umbilical cord blood and milk of Indian women. Hum Exp Toxicol. 1995;14(6):503-506. Marieb EN, Hoehn K (2007) Human Anatomy & Physiology 7th ed. Pearson Benjamin Cummings: San Francisco p 317 McCowan LM, Dekker GA, Chan E, Stewart A, Chappell LC, Hunter M, Moss-Morris R, North RA; SCOPE consortium. Spontaneous preterm birth and small for gestational age infants in women who stop smoking early in pregnancy: prospective cohort study. BMJ. 2009;338:b1081. McKay LI, Cidlowski JA. Cross-talk between nuclear factor-kappa B and the steroid hormone receptors: mechanisms of mutual antagonism. Mol Endocrinol. 1998;12(1):45-56. Meng F, Liu L, Chin PC, D'Mello SR. Akt is a downstream target of NF-kappa B. J Biol Chem. 2002;277(33):29674-29680. Momma H, Niu K, Kobayashi Y, Guan L, Sato M, Guo H, Chujo M, Otomo A, Yufei C, Tadaura H, Saito T, Mori T, Miyata T, Nagatomi R.. Skin advanced glycation end product accumulation and muscle strength among adult men. Eur J Appl Physiol. 2011;111(7):1545-1552. Mouisel E, Vignaud A, Hourdé C, Butler-Browne G, Ferry A. Muscle weakness and atrophy are associated with decreased regenerative capacity and changes in mTOR signaling in skeletal muscles of venerable (18-24-month-old) dystrophic mdx mice. Muscle Nerve. 2010;41(6):809-818. Nagai R, Murray DB, Metz TO, Baynes JW. Chelation: a fundamental mechanism of action of AGE inhibitors, AGE breakers, and other inhibitors of diabetes complications. Diabetes. 2012;61(3):549-59. Pansters NA, Schols AM, Verhees KJ, de Theije CC, Snepvangers FJ, Kelders MC, Ubags ND, Haegens A, Langen RC. Muscle-specific GSK-3β ablation accelerates regeneration of disuse-atrophied skeletal muscle. Biochim Biophys Acta. 2015;1852(3):490-506. Paul PK, Bhatnagar S, Mishra V, Srivastava S, Darnay BG, Choi Y & Kumar A. The E3 ubiquitin ligase TRAF6 intercedes in starvation-induced skeletal muscle atrophy through multiple mechanisms. Mol Cell Biol. 2012;32:1248-1259. Perera FP, Rauh V, Tsai WY, Kinney P, Camann D, Barr D, Bernert T, Garfinkel R, Tu YH, Diaz D, Dietrich J, Whyatt RM. Effects of transplacental exposure to environmental pollutants on birth outcomes in a multiethnic population. Environ Health Perspect. 2003;111(2):201-205. Perera FP, Rauh V, Whyatt RM, Tang D, Tsai WY, Bernert JT, Tu YH, Andrews H, Barr DB, Camann DE, Diaz D, Dietrich J, Reyes A, Kinney PL. A summary of recent findings on birth outcomes and developmental effects of prenatal ETS, PAH, and pesticide exposures. Neurotoxicology. 2005;26(4):573-587. Perera FP, Whyatt RM, Jedrychowski W, Rauh V, Manchester D, Santella RM, Ottman R. Recent developments in molecular epidemiology: A study of theeffects of environmental polycyclic aromatic hydrocarbons on birth outcomes in Poland. Am J Epidemiol. 1998;147(3):309-314. Riuzzi F, Sorci G, Sagheddu R, Donato R. HMGB1-RAGE regulates muscle satellite cell homeostasis through p38-MAPK- and myogenin-dependent repression of Pax7 transcription. J Cell Sci. 2012;125(Pt 6):1440-1454. Rosenberg IH. Summary comments: epidemiological and methodological problems in determining nutritional status of older persons. Am J Clin Nutr. 1989;50:1231-1233. Sakuma K, Yamaguchi A. Sarcopenic obesity and endocrinal adaptation with age. Int J Endocrinol. 2013;2013:204164. Shainberg A, Yagil G, Yaffe D. Alterations of enzymatic activities during muscle differentiation in vitro. Dev Biol. 1971;25(1):1-29. Singh R, Barden A, Mori T, Beilin L. Advanced glycation end-products: a review. Diabetologia. 2001;44(2):129-146. Skoczyńska A, Budzisz E, Dana A, Rotsztejn H. New look at the role of progerin in skin aging. Prz Menopauzalny. 2015;14(1):53-58. Snow LM, Fugere NA, Thompson LV. Advanced glycation end-product accumulation and associated protein modification in type II skeletal muscle with aging. J Gerontol A Biol Sci Med Sci. 2007;62(11):1204-1210. Snow LM, Thompson LV. Influence of insulin and muscle fiber type in nepsilon-(carboxymethyl)-lysine accumulation in soleus muscle of rats with streptozotocin-induced diabetes mellitus. Pathobiology. 2009;76(5):227-234. Tan AL, Sourris KC, Harcourt BE, Thallas-Bonke V, Penfold S, Andrikopoulos S, Thomas MC, O'Brien RC, Bierhaus A, Cooper ME, Forbes JM, Coughlan MT. Disparate effects on renal and oxidative parameters following RAGE deletion, AGE accumulation inhibition, or dietary AGE control in experimental diabetic nephropathy. Am J Physiol Renal Physiol. 2010;298(3):F763-F770. Tanji N, Markowitz GS, Fu C, Kislinger T, Taguchi A, Pischetsrieder M, Stern D, Schmidt AM, D'Agati VD. Expression of advanced glycation end products and their cellular receptor RAGE in diabetic nephropathy and nondiabetic renal disease. J Am Soc Nephrol. 2000;11(9):1656-1666. Thallas-Bonke V, Coughlan MT, Tan AL, Harcourt BE, Morgan PE, Davies MJ, Bach LA, Cooper ME, Forbes JM. Targeting the AGE-RAGE axis improves renal function in the context of a healthy diet low in advanced glycation end-product content. Nephrology (Carlton). 2013;18(1):47-56. Tian Y, Ke S, Denison MS, Rabson AB, Gallo MA. Ah receptor and NF-kappaB interactions, a potential mechanism for dioxin toxicity. J Biol Chem. 1999; 274(1):510-515. Tipton KD, Rasmussen BB, Miller SL, Wolf SE, Owens-Stovall SK, Petrini BE, Wolfe RR. Timing of amino acid-carbohydrate ingestion alters anabolic response of muscle to resistance exercise. Am J Physiol Endocrinol Metab. 2001;281(2):E197-E206. Tsai KS, Yang RS, Liu SH. Benzo[a]pyrene regulates osteoblast proliferation through an estrogen receptor-related cyclooxygenase-2 pathway. Chem Res Toxicol. 2004;17(5):679-684. Vaitkevicius PV, Lane M, Spurgeon H, Ingram DK, Roth GS, Egan JJ, Vasan S, Wagle DR, Ulrich P, Brines M, Wuerth JP, Cerami A, Lakatta EG.. A cross-link breaker has sustained effects on arterial and ventricular properties in older rhesus monkeys. Proc Natl Acad Sci U S A. 2001;98(3):1171-1175. van Grevenynghe J, Rion S, Le Ferrec E, Le Vee M, Amiot L, Fauchet R, Fardel O. Polycyclic aromatic hydrocarbons inhibit differentiation of human monocytes into macrophages. J Immunol. 2003;170(5):2374-2381. Vaz CV, Marques R, Maia CJ, Socorro S. Aging-associated changes in oxidative stress, cell proliferation, and apoptosis are prevented in the prostate of transgenic rats overexpressing regucalcin. Transl Res. 2015;166(6):693-705. Verdijk LB, Dirks ML, Snijders T, Prompers JJ, Beelen M, Jonkers RA, Thijssen DH, Hopman MT, Van Loon LJ. Reduced satellite cell numbers with spinal cord injury and aging in humans. Med Sci Sports Exerc. 2012;44(12):2322-2330. Volpato S, Bianchi L, Cherubini A, Landi F, Maggio M, Savino E, Bandinelli S, Ceda GP, Guralnik JM, Zuliani G, Ferrucci L. Prevalence and clinical correlates of sarcopenia in community-dwelling older people: application of the EWGSOP definition and diagnostic algorithm. J Gerontol A Biol Sci Med Sci. 2014;69(4):438-446. Voronov I, Li K, Tenenbaum HC, Manolson MF. Benzo[a]pyrene inhibits osteoclastogenesis by affecting RANKL-induced activation of NF-kappaB. Biochem Pharmacol. 2008;75(10):2034-2044. Wang L, Tian W, Uwais Z, Li G, Li H, Guan R, Gao Z, Xin Z. AGE-breaker ALT-711 plus insulin could restore erectile function in streptozotocin-induced type 1 diabetic rats. J Sex Med. 2014;11(6):1452-1462 Willemsen S, Hartog JW, Hummel YM, Posma JL, van Wijk LM, van Veldhuisen DJ, Voors AA. Effects of alagebrium, an advanced glycation end-product breaker, in patients with chronic heart failure: study design and baseline characteristics of the BENEFICIAL trial. Eur J Heart Fail. 2010;12(3):294-300. Williamson DL, Butler DC, Alway SE. AMPK inhibits myoblast differentiation through a PGC-1alpha-dependent mechanism. Am J Physiol Endocrinol Metab. 2009;297(2):E304-E314. Wolffenbuttel BH, Boulanger CM, Crijns FR, Huijberts MS, Poitevin P, Swennen GN, Vasan S, Egan JJ, Ulrich P, Cerami A, Lévy BI. Breakers of advanced glycation end products restore large artery properties in experimental diabetes. Proc Natl Acad Sci U S A. 1998;95(8):4630-4634. Wu J, Hou H, Ritz B, Chen Y. Exposure to polycyclic aromatic hydrocarbons and missed abortion in early pregnancy in a Chinese population. Sci Total Environ. 2010;408(11):2312-2318. Yan SF, Ramasamy R, Naka Y, Schmidt AM. Glycation, inflammation, and RAGE: a scaffold for the macrovascular complications of diabetes and beyond. Circ Res. 2003;93(12):1159-1169. Yang SY, Hoy M, Fuller B, Sales KM, Seifalian AM, Winslet MC. Pretreatment with insulin-like growth factor I protects skeletal muscle cells against oxidative damage via PI3K/Akt and ERK1/2 MAPK pathways. Lab Invest. 2010;90(3): 391-401. Yen YP, Tsai KS, Chen YW, Huang CF, Yang RS, Liu SH. Arsenic inhibits myogenic differentiation and muscle regeneration. Environ Health Perspect. 2010;118(7):949-956. Yu W, Wu J, Cai F, Xiang J, Zha W, Fan D, Guo S, Ming Z, Liu C. Curcumin alleviates diabetic cardiomyopathy in experimental diabetic rats. PLoS One. 2012;7(12):e52013. Zhang MH, Feng L, Zhu MM, Gu JF, Jiang J, Cheng XD, Ding SM, Wu C, Jia XB. The anti-inflammation effect of Moutan Cortex on advanced glycation end products-induced rat mesangial cells dysfunction and High-glucose-fat diet and streptozotocin-induced diabetic nephropathy rats. J Ethnopharmacol. 2014; 151(1):591-600. Zhao J, Randive R, Stewart JA. Molecular mechanisms of AGE/RAGE-mediated fibrosis in the diabetic heart. World J Diabetes. 2014;5(6):860-867. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19604 | - |
dc.description.abstract | 隨著全球健康意識日益提升,生理及疾病狀態所衍生之骨骼肌損傷危險因子亦受到重視,例如老化、肥胖、糖尿病等慢性生理及疾病變化進展所誘發之肌肉減少亦或經環境危險因子暴露誘發肌肉生長遲滯之情形。骨骼肌的減損會弱化骨骼肌之生理功能,導致肌肉無力、疲乏,甚者進而無法行動,而肌肉生長遲滯則可能導致低出生體重之早產兒。目前已知孕婦若暴露於香菸中多環芳香烴物質,如苯并芘 (benzo(a)pyrene, BaP),則會產生肌肉生長遲滯之低出生體重早產兒。此外,患有老化肌肉衰減症(sarcopenia)與許多肌肉耗損性疾病之肌纖維萎縮為最顯著的病理組織現象。在老化與糖尿病進程中,體內形成高糖化終產物(advanced glycation end products, AGEs)的量會明顯增加並被堆積起來,且AGEs的堆積已被證實與糖尿病併發症和年齡相關性疾病有關;另外,亦有研究指出糖尿病狀態與年長者的肌肉組織會大量增加AGEs的形成與堆積。然而,目前對於BaP與AGEs是否為於肌肉萎縮與功能失調中扮演重要角色則仍待釐清。本論文首先利用人類骨骼肌前驅細胞 (human skeletal muscle progenitor cells, HSMPCs),探討BaP與其代謝物(benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide, BPDE)是否影響HSMPCs之分化及其作用機轉。另者,本論文亦探討糖尿病狀態下AGEs在肌肉萎縮與失能中所扮演的角色,並找尋將來可以用於臨床肌肉萎縮及失能之治療方向。首先,實驗結果顯示BaP與BPDE皆會抑制HSMPCs之分化,並正向調控磷酸化neuclear factor (NF)-κB的表現與負向調控肌肉特定分化蛋白(myogenin及myosin heavy chain)及磷酸化Akt的表現。給予芳香烴受體(aryl hydrocarbon receptor, AhR)抑制劑、雌激素受體(estrogen receptor, ER)抑制劑及NF-κB抑制劑能夠有效回復由BaP與BPDE所引發抑制分化相關的訊息傳遞。然而,當停止持續暴露BaP及BPDE時,則僅BaP具回復性作用,而BPDE則反之。另一方面,本篇研究發現糖尿病患者較一般正常人呈現大量AGEs累積於肌肉組織,並且肌肉萎縮相關蛋白表現(Atrogin-1與AMP-activated protein kinase (AMPK))亦大量表現於其中。本篇研究亦發現以streptozotocin誘導之糖尿病小鼠會增加血液與肌肉中AGEs含量,並造成肌肉含量衰減、肌肉萎縮、肌肉再生能力弱化及增加肌肉萎縮與失能相關蛋白表現(RAGE、Atrogin-1與AMPK)。給予AGEs阻斷劑 (alagebrium chloride, Ala-Cl)可有效緩減糖尿病小鼠所引發肌肉功能受損現象及其相關蛋白表現。此外,細胞研究結果顯示AGEs可促發小鼠肌母細胞(mouse myoblasts)與HSMPCs之肌小管萎縮及抑制其肌肉分化。同時,AGEs可藉由RAGE正向調控AMPK,進而負向調控Akt之訊息傳遞,導致肌小管萎縮與肌肉分化抑制。綜合上述,本論文研究成果證實BaP與AGEs皆為肌肉萎縮與失能之潛在危險因子,結果顯示BaP與其代謝物BPDE可藉由AhR或ER調控NF-κB/Akt 訊息傳遞途徑,進而抑制肌肉分化;另一方面,人類、動物及細胞研究成果亦證實AGEs可經RAGE正向調控AMPK,進而負向調控Akt之訊息傳遞,導致肌肉萎縮與失能,並提供Ala-Cl可做為糖尿病或老年引發肌肉萎縮與失能之治療用藥之新選擇。未來仍需進一步探討BaP與BPDE如何造成低出生體重早產兒之詳細機轉,而亦須進一步探尋老年與糖尿病所造成肌肉萎縮與失能之臨床有效與專一性之診斷生物指標。 | zh_TW |
dc.description.abstract | There is a growing global health awareness of the risk factors of skeletal muscle in many physiological and disease processes, including skeletal muscle mass declines with aging, obesity, diabetes and other chronic diseases, and in environmental risk factors-inducing muscle growth retardation. Loss of skeletal muscle has been related to the frailty of skeletal muscle function by weakness, fatigue and disability, and muscle growth retardation may result in low birth weight infants. Exposure to cigarette smoke or its polycyclic aromatic hydrocarbons component (eg, benzo(a)pyrene, BaP) during pregnancy has been to give birth to low birth weight and lower peripheral muscle area neonates. Muscle fibres atrophy has been reported as an obvious pathohistological phenomenon of people with sarcopenia and muscle wasting diseases. The aging and diabetic process has been ultimately associated with elevated advanced glycation end products (AGEs) presence contributing to chronic diabetic complications and age-related diseases. Accumulation AGEs in the skeletal muscle tissue has been also increasingly identified in diabetic animals as well as in elderly human subjects. However, it still needs to be certified BaP and AGEs play important roles in muscle atrophy and dysfunction. Therefore, the first aim of this study is to investigate the action and cellular mechanism of BaP and its metabolite (benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide, BPDE) on myogenic differentiation in HSMPCs. The other aim of this study is to characterize the action and molecular mechanism of AGEs-induced skeletal muscle atrophy and regeneration impairment and find the therapeutic potential for muscle atrophy and dysfunction in the clinic. First, both BaP and BPDE inhibited myogenic differentiation and showed upregulation of phosphorylated nuclear factor (NF)-κB and downregulation of the muscle-specific protein expressions (myogenin and myosin heavy chain) and phosphorylation of Akt, which could be significantly reversed by the inhibitors for aryl hydrocarbon receptor (AhR), estrogen receptor (ER), and NF-κB. The inhibitory effects of BaP and BPDE on myogenesis were reversed after withdrawing BaP exposure, but not after BPDE withdrawal. On the other hand, the muscle fiber atrophy and immunoreactivities for AGEs, Atrogin-1 (a muscle atrophy marker), and phosphorylated AMP-activated protein kinase (AMPK) expressions were markedly increased in the human skeletal muscles from diabetic patient as compared with the normal human subject. Moreover, there were increased blood AGEs, less muscle mass, lower muscular endurance, atrophic muscle size, poor regenerative capacity, and increased expressions of muscle AGEs, receptor for AGE (RAGE), Atrogin-1, and phosphorylated AMPK in streptozotocin-induced diabetic mice. AGEs cross-link breaker alagebrium chloride (Ala-Cl) significantly ameliorated the muscular malfunction observed in diabetic mice. Furthermore, AGEs also induced atrophic myotubes and inhibited myogenesis in mouse myoblasts and HSMPCs. We further demonstrated that AGEs induced muscle atrophy/myogenesis impairment via a RAGE-mediated AMPK-down-regulated Akt pathway. Taken together, the present study has been demonstrated BaP and AGEs are the potential risk factor for muscle atrophy and dysfunction. These results suggest that both BaP and BPDE are capable of inhibiting myogenesis via an AhR or/and ER-regulated NF-κB/Akt signaling pathway. On the other hand, these findings suggest that AGEs elicit skeletal muscle atrophy and regeneration impairment in the models of the models of the patient sample, diabetic mice and cultured muscle cells, and Ala-Cl may be a new therapeutic strategy for management of diabetic or aging muscle atrophy and dysfunction. However, the causation of BaP/BPDE-related low birth weight needs to be clarified in the future. We also need to explore specific and efficient biomarkers for clinical diagnosis of aging- and diabetes-induced skeletal muscle atrophy and dysfunction. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T02:08:02Z (GMT). No. of bitstreams: 1 ntu-105-F98447001-1.pdf: 7260587 bytes, checksum: 728148233321016d9d77129f75c2e8d0 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii Abstract v List of Abbreviation viii 1. Introduction 1 1.1. Background 1 1.2. Muscle Development 1 1.3. Environment-related Muscle Growth Retardation 2 1.4. Aging-related Muscle Loss 3 1.5. Diabetes-related Muscle Loss 5 1.6. Current Therapeutic Strategies for Aging- and Disease-related Muscle Loss 6 1.7. Aims of This Study 7 1.8. Figures 8 [Figure 1.1] The Steps of Myogenic Differentiation 8 [Figure 1.2] Cellular and Molecular Mechanisms of Muscle Atrophy 8 [Figure 1.3] Current Therapeutic Interventions in the Glycation Pathway 9 2. Materials and Methods 10 2.1. Ethics Statement 10 2.2. Isolation and Culture of Primary HSMPCs. 10 2.3. C2C12 Myoblasts 11 2.4. Preparation of Treated Reagents 11 2.4.1. BaP and BPDE 11 2.4.2. AGEs 11 2.5. Treatment 11 2.5.1. Myogenic Differentiation Treatment with BaP and BPDE 11 2.5.2. Myogenic Differentiation and Differentiated Myotube Treatment with AGEs 12 2.6. Transient Transfection 13 2.7. Morphological Myotube Analysis 13 2.8. Immunoblotting 13 2.9. Creatine Kinase Activity Assay 14 2.10. Enzyme-linked Immunosorbent Assay (ELISA) 15 2.10.1. BPDE-DNA Adducts Analysis 15 2.10.2. Measurement of AGEs Production 15 2.11. Experimental Animals 15 2.12. Muscle Fatigue Task 15 2.13. Muscle Regeneration 16 2.14. Sampling 16 2.15. Histological Assessment 17 2.16. Statistics 17 3. Results and Discussion 19 3.1. Low-Dose Benzo(a)pyrene and its Epoxide Metabolite Inhibit Myogenic Differentiation in Human Skeletal Muscle-Derived Progenitor Cells 19 3.1.1. Results 19 3.1.1.1. BaP and BPDE Repressed Myogenic Differentiation of HSMPCs 19 3.1.1.2. BaP and BPDE Inhibited Myogenesis through the Aryl Hydrocarbon Receptor (AhR) or Estrogen Receptor (ER)/NF-κB-p65/Akt Pathway 20 3.1.1.3. Reversible and Irreversible Effects of BaP and BPDE Respectively on HSMPCs Myogenic Differentiation 21 3.1.2. Discussion 22 3.1.3. Figures 27 [Figure 3.1.1] 27 [Figure 3.1.2] 28 [Figure 3.1.3] 29 [Figure 3.1.4] 30 [Figure 3.1.5] 32 [Figure 3.1.6] 33 [Figure 3.1.7] 34 [Figure 3.1.8] 35 3.2. Advanced Glycation End Products Induce Skeletal Muscle Atrophy and Dysfunction during Diabetes via an RAGE-Mediated AMPK-Downregulated Akt Pathway 36 3.2.1. Results 36 3.2.1.1. AGEs Accumulation and Skeletal Muscle Atrophy in the Diabetic Human. 36 3.2.1.2. AGEs Induces Muscle Wasting, Weakness, and the Signals of Muscle Atrophy in Diabetic Mice 36 3.2.1.3. AGEs Induces Lower Regenerative Capacity and the Signals of Myogenesis Inhibition in Diabetic Mice 38 3.2.1.4. AGEs Promotes Muscle Atrophy in Myotubes and Diminishes Myogenesis of Myoblasts and Progenitor Cells 38 3.2.1.5. Reversible Effects of AGEs on Myotube Atrophy and Myogenic Inhibition of Myoblasts and Progenitor Cells 41 3.2.2. Discussion 41 3.2.3. Figures 46 [Figure 3.2.1] 46 [Figure 3.2.2] 48 [Figure 3.2.3] 49 [Figure 3.2.4] 51 [Figure 3.2.5] 53 [Figure 3.2.6] 55 [Figure 3.2.7] 56 [Figure 3.2.8] 57 [Figure 3.2.9] 58 [Figure 3.2.10] 60 [Figure 3.2.11] 62 [Figure 3.2.12] 64 [Figure 3.2.13] 65 [Figure 3.2.14] 66 [Figure 3.2.15] 67 [Figure 3.2.16] 68 [Figure 3.2.17] 69 [Figure 3.2.18] 71 [Figure 3.2.19] 73 [Figure 3.2.20] 75 [Figure 3.2.21] 77 [Figure 3.2.22] 78 [Figure 3.2.23] 79 [Figure 3.2.24] 80 [Figure 3.2.25] 81 4. Conclusion and Future Perspectives 83 5. References 84 6. Appendix 100 | |
dc.language.iso | en | |
dc.title | 探討肌肉萎縮及失能之危險因子:以苯并芘與高糖化終產物為例 | zh_TW |
dc.title | Effects of Risk Factors on Muscle Atrophy and Dysfunction: Examples of Benzo(a)pyrene and Advanced Glycation End Products | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 姜至剛(Chih-Kang Chiang),楊榮森(Rong-Sen Yang),林琬琬(Wan-Wan Lin),蕭水銀(Shoei-Yn Lin-Shiau) | |
dc.subject.keyword | 苯并芘,高糖化終產物,骨骼肌,萎縮,肌分化,失能,AMPK, | zh_TW |
dc.subject.keyword | benzo(a)pyrene,advanced glycation end products,skeletal muscle,atrophy,myogenic differentiation,dysfunction,AMPK, | en |
dc.relation.page | 100 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2016-02-01 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 毒理學研究所 | zh_TW |
顯示於系所單位: | 毒理學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 7.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。