請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19565完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林啟萬(Chii-Wann Lin) | |
| dc.contributor.author | Hsin-Kuei Liu | en |
| dc.contributor.author | 劉炘魁 | zh_TW |
| dc.date.accessioned | 2021-06-08T02:05:49Z | - |
| dc.date.copyright | 2020-08-24 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-17 | |
| dc.identifier.citation | [1] Benedictow, 2004,O.J. Benedictow,The black death,The Complete History: Boydell Brewer (2004), pp. 1346-1353 [2] Watkins, K. Emerging Infectious Diseases: a Review. Curr Emerg Hosp Med Rep6, 86–93 (2018). https://doi.org/10.1007/s40138-018-0162-9 [3] WHO. Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003. https://www.who.int/csr/sars/country/table2004_04_21/en/. [4] Smith KM, Machalaba CC, Seifman R, Feferholtz Y, Karesh WB. Infectious disease and economics: The case for considering multi-sectoral impacts. One Health. 2019;7:100080. Published 2019 Jan 9. doi:10.1016/j.onehlt.2018.100080 [5] Manit Arya, Iqbal S Shergill, Magali Williamson, Lyndon Gommersall, Neehar Arya Hitendra RH Patel (2005) Basic principles of real-time quantitative PCR,Expert Review of Molecular Diagnostics, 5:2, 209-219, DOI:10.1586/14737159.5.2.209 [6] Durmaz AA, Karaca E, Demkow U, Toruner G, Schoumans J, Cogulu O. Evolution of genetic techniques: past, present, and beyond. Biomed Res Int. 2015;2015:461524. doi:10.1155/2015/461524 [7] Langer-Safer PR, Levine M, Ward DC. Immunological method for mapping genes on Drosophila polytene chromosomes. Proc Natl Acad Sci U S A. 1982;79(14):4381‐4385. doi:10.1073/pnas.79.14.4381 [8] Saiki, Randall K. 'Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia.' Science, vol. 230, 1985, p. 1350+. Gale OneFile: Health and Medicine, Accessed 10 May 2020. [9] Hood L, Rowen L. The Human Genome Project: big science transforms biology and medicine. Genome Med. 2013;5(9):79. Published 2013 Sep 13. doi:10.1186/gm483 [10] Tzeng CH, Lyou JY, Chen YR, et al. Determination of sibship by PCR-amplified short tandem repeat analysis in Taiwan. Transfusion. 2000;40(7):840–845. doi:10.1046/j.1537-2995.2000.40070840.x [11] S.A. Deepak, K.R. Kottapalli, R. Rakwal, G. Oros, K.S. Rangappa, H. Iwahashi, Y. Masuo and G.K. Agrawal, “ Real-Time PCR: Revolutionizing Detection and Expression Analysis of Genes”, Current Genomics (2007) 8: 234. [12] Bhalla N, Jolly P, Formisano N, Estrela P. Introduction to biosensors. Essays Biochem. 2016;60(1):1‐8. doi:10.1042/EBC20150001 [13] Yoo EH, Lee SY. Glucose biosensors: an overview of use in clinical practice. Sensors (Basel). 2010;10(5):4558‐4576. doi:10.3390/s100504558 [14] Mehrotra P. Biosensors and their applications - A review. J Oral Biol Craniofac Res. 2016;6(2):153–159. doi:10.1016/j.jobcr.2015.12.002 [15] Baric, S., Kerschbamer, C. Via, J.D. TaqMan real-time PCR versus four conventional PCR assays for detection of apple proliferation phytoplasma. Plant Mol Biol Rep 24, 169 (2006). [16] Sidstedt M, Hedman J, Romsos EL, et al. Inhibition mechanisms of hemoglobin, immunoglobulin G, and whole blood in digital and real-time PCR. Anal Bioanal Chem. 2018;410(10):2569–2583. doi:10.1007/s00216-018-0931-z [17] Guo Y, Song G, Sun M, Wang J and Wang Y (2020) Prevalence and Therapies of Antibiotic-Resistance in Staphylococcus aureus. Front. Cell. Infect. Microbiol. 10:107. doi: 10.3389/fcimb.2020.00107 [18] Haseeb, A., Ajit Singh, V., Teh, C. S. J., and Loke, M. F. (2019). Addition of ceftaroline fosamil or vancomycin to PMMA: an in vitro comparison of biomechanical properties and anti-MRSA efficacy. J. Orthop. Surg. 27:2309499019850324. doi: 10.1177/2309499019850324 [19] Pastagia, Mina Kleinman, Lawrence Cruz, Eliesel Jenkins, Stephen. (2012). Predicting Risk for Death from MRSA Bacteremia. Emerging infectious diseases. 18. 1072-80. 10.3201/eid1807.101371. [20] Peacock SJ, Paterson GK. Mechanisms of Methicillin Resistance in Staphylococcus aureus. Annu Rev Biochem. 2015;84:577-601. doi:10.1146/annurev-biochem-060614-034516 [21] ABRAHAM, E., CHAIN, E. An Enzyme from Bacteria able to Destroy Penicillin.Nature 146, 837 (1940). https://doi.org/10.1038/146837a0 [22] PARKER MT, JEVONS MP. A SURVEY OF METHICILLIN RESISTANCE IN STAPHYLOCOCCUS AUREUS. Postgrad Med J. 1964;40(Suppl):170-178. doi:10.1136/pgmj.40.suppl.170 [23] Hartman B, Tomasz A. Altered penicillin-binding proteins in methicillin-resistant strains of Staphylococcus aureus. Antimicrob Agents Chemother. 1981;19(5):726-735. doi:10.1128/aac.19.5.726 [24] Heumann D, Barras C, Severin A, Glauser MP, Tomasz A. Gram-positive cell walls stimulate synthesis of tumor necrosis factor alpha and interleukin-6 by human monocytes. Infect Immun. 1994;62(7):2715-2721. [25] Dinges MM, Orwin PM, Schlievert PM. Exotoxins of Staphylococcus aureus. Clin Microbiol Rev. 2000;13(1):16-34. doi:10.1128/cmr.13.1.16-34.2000 [26] Moreillon P, Que YA, Bayer AS. Pathogenesis of streptococcal and staphylococcal endocarditis. Infect Dis Clin North Am. 2002;16(2):297-318. doi:10.1016/s0891-5520(01)00009-5 [27] Chavakis T, Hussain M, Kanse SM, et al. Staphylococcus aureus extracellular adherence protein serves as anti-inflammatory factor by inhibiting the recruitment of host leukocytes. Nat Med. 2002;8(7):687-693. doi:10.1038/nm728 [28] CLSI [29] Geiger K, Brown J. Rapid testing for methicillin-resistant Staphylococcus aureus: implications for antimicrobial stewardship. Am J Health Syst Pharm. 2013;70(4):335‐342. doi:10.2146/ajhp110724 [30] Fang H, Hedin G. Rapid screening and identification of methicillin-resistant Staphylococcus aureus from clinical samples by selective-broth and real-time PCR assay [published correction appears in J Clin Microbiol. 2006 Feb;44(2):675]. J Clin Microbiol. 2003;41(7):2894‐2899. doi:10.1128/jcm.41.7.2894-2899.2003 [31] Brown J, Paladino JA. Impact of rapid methicillin-resistant Staphylococcus aureus polymerase chain reaction testing on mortality and cost effectiveness in hospitalized patients with bacteraemia: a decision model. Pharmacoeconomics. 2010;28(7):567‐575. doi:10.2165/11533020-000000000-00000 [32] Cunningham R, Jenks P, Northwood J, Wallis M, Ferguson S, Hunt S. Effect on MRSA transmission of rapid PCR testing of patients admitted to critical care. J Hosp Infect. 2007;65(1):24-28. doi:10.1016/j.jhin.2006.09.019 [33] TJIO, J.H. and LEVAN, A. (1956), THE CHROMOSOME NUMBER OF MAN. Hereditas, 42: 1-6. doi:10.1111/j.1601-5223.1956.tb03010.x [34] C. E. Ford, K. W. Jones, P. E. Polani, J. C. De Almeida, and J. H. Briggs, “A sex-chromosome anomaly in a case of gonadal dysgenesis (turner’s syndrome),” The Lancet, vol. 273, no. 7075, pp. 711–713, 1959. [35] P. R. Langer-Safer, M. Levine, and D. C. Ward, “Immunological methods for mapping genes on Drosophila polytene chromosomes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 79, no. 14, pp. 4381–4385, 1982. [36] Kallioniemi, O.-P. Kallioniemi, D. Sudar et al., “Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors,” Science, vol. 258, no. 5083, pp. 818–821, 1992. [37] Bejjani BA, Shaffer LG. Application of array-based comparative genomic hybridization to clinical diagnostics. J Mol Diagn. 2006;8(5):528-533. doi:10.2353/jmoldx.2006.060029 [38] F. Sanger, S. Nicklen, and A. R. Coulson, “DNA sequencing with chain-terminating inhibitors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 74, no. 12, pp. 5463–5467, 1977. [39] Saiki RK, Scharf S, Faloona F, et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985;230(4732):1350-1354. doi:10.1126/science.2999980 [40] Deepak S, Kottapalli K, Rakwal R, et al. Real-Time PCR: Revolutionizing Detection and Expression Analysis of Genes. Curr Genomics. 2007;8(4):234-251. doi:10.2174/138920207781386960 [41] Strandgren, Charlotte. (2020). Studies of the Diversity of Lactobacillus spp. in Fecal Samples Using PCR and Denaturing Gradient Gel Electrophoresis. [42] A. Cecile J.W. Janssens, Cornelia M. van Duijn, Genome-based prediction of common diseases: advances and prospects, Human Molecular Genetics, Volume 17, Issue R2, 15 October 2008, Pages R166–R173 [43] Notomi T, Okayama H, Masubuchi H, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28(12):E63. doi:10.1093/nar/28.12.e63 [44] Anthony Johnson AM, Dasgupta I, Sai Gopal DV. Development of loop-mediated isothermal amplification and SYBR green real-time PCR methods for the detection of Citrus yellow mosaic badnavirus in citrus species. J Virol Methods. 2014;203:9‐14. doi:10.1016/j.jviromet.2014.03.013 [45] Li JJ, Xiong C, Liu Y, Liang JS, Zhou XW. Loop-Mediated Isothermal Amplification (LAMP): Emergence As an Alternative Technology for Herbal Medicine Identification. Front Plant Sci. 2016;7:1956. Published 2016 Dec 26. [46] Mori Y, Nagamine K, Tomita N, Notomi T. Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem Biophys Res Commun. 2001;289(1):150‐154. doi:10.1006/bbrc.2001.5921 [47] Zhang X, Lowe SB, Gooding JJ. Brief review of monitoring methods for loop-mediated isothermal amplification (LAMP). Biosens Bioelectron. 2014;61:491‐499. doi:10.1016/j.bios.2014.05.039 [48] Chuang TL, Wei SC, Lee SY, Lin CW. A polycarbonate based surface plasmon resonance sensing cartridge for high sensitivity HBV loop-mediated isothermal amplification. Biosens Bioelectron. 2012;32(1):89‐95. doi:10.1016/j.bios.2011.11.037 [49] Dhama K, Karthik K, Chakraborty S, et al. Loop-mediated isothermal amplification of DNA (LAMP): a new diagnostic tool lights the world of diagnosis of animal and human pathogens: a review. Pak J Biol Sci. 2014;17(2):151‐166. doi:10.3923/pjbs.2014.151.166 [50] Karthik K, Rathore R, Thomas P, et al. New closed tube loop mediated isothermal amplification assay for prevention of product cross-contamination. MethodsX. 2014;1:137‐143. Published 2014 Aug 27. doi:10.1016/j.mex.2014.08.009 [51] Bhalla N, Jolly P, Formisano N, Estrela P. Introduction to biosensors. Essays Biochem. 2016;60(1):1‐8. doi:10.1042/EBC20150001 [52] Treviño J, Calle A, Rodríguez-Frade JM, Mellado M, Lechuga LM. Surface plasmon resonance immunoassay analysis of pituitary hormones in urine and serum samples. Clin Chim Acta 2009;403:56-62. [53] Krishnan S, Mani V, Wasalathanthri D, Kumar CV, Rusling JF. Attomolar detection of a cancer biomarker protein in serum by surface plasmon resonance using superparamagnetic particle labels. Angew Chem Int Ed Engl 2011 50:1175-8. [54] Ermini ML, Mariani S, Scarano S, Campa D, Barale R, Minunni M. Single nucleotide polymorphism detection by optical DNA-based sensing coupled with whole genomic amplification. Anal Bioanal Chem 2012; Sept 6. [55] Wang J, Luo Y, Zhang B, Chen M, Huang J, Zhang K, et al. Rapid label-free identification of mixed bacterial infections by surface plasmon resonance. J Transl Med 2011;9:85. [56] Ritchie, R.H., et al., Surface-plasmon resonance effect in grating diffraction. Physical Review Letters, 1968. 21(22): p. 1530. [57] Wood, R.W., On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Proceedings of the Physical Society of London, 1902. 18(1): p. 269. [58] Fano, U., The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves). JOSA, 1941. 31(3): p. 213-222. [59] Kretschmann, E. and H. Raether, Radiative decay of non radiative surface plasmons excited by light. Zeitschrift für Naturforschung A, 1968. 23(12): p. 2135-2136. [60] Otto, A., Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik A Hadrons and nuclei, 1968. 216(4): p. 398-410. [61] Tang Y, Zeng X, Liang J. Surface Plasmon Resonance: An Introduction to a Surface Spectroscopy Technique. J Chem Educ. 2010;87(7):742‐746. doi:10.1021/ed100186y [62] Piliarik M, Vaisocherová H, Homola J. Surface plasmon resonance biosensing. Methods Mol Biol. 2009;503:65‐88. doi:10.1007/978-1-60327-567-5_5 [63] Helmerhorst E, Chandler DJ, Nussio M, Mamotte CD. Real-time and Label-free Bio-sensing of Molecular Interactions by Surface Plasmon Resonance: A Laboratory Medicine Perspective. Clin Biochem Rev. 2012;33(4):161‐173. [64] Schuck P, Zhao H. The role of mass transport limitation and surface heterogeneity in the biophysical characterization of macromolecular binding processes by SPR biosensing. Methods Mol Biol 2010;627:15-54. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19565 | - |
| dc.description.abstract | 快速靈敏的臨床檢測能夠增進疾病診斷及疾病擴散的控制,但目前臨床上針對基因檢測所使用的即時聚合酶連鎖反應,因前處理過程複雜且檢測時間過長,並不適合運用於快速臨床檢測。因此,本研究旨在開發一個新型的檢測系統,藉由在奈米金膜上針對標的基因進行環形恆溫擴增法過程反應產物造成的溶液折射率改變,配合波長850nm光與影像感光耦合元件的表面電漿子共振感測系統進行即時訊號擷取,依據所產生的角度與強度的量測對應折射率變化所產生的光學訊號改變。進一步搭配核酸熔解曲線進行分析,讓不同長短的雙股核酸片段在不同溫度下解離,進一步的共振角度位移。此新式的檢測系統有以下優點,首先,因為表面電漿子共振具有高敏感度與即時的特點,可以實現低濃度快速檢測與分子交互作用的動態分析。接著,因為環形恆溫擴增法上針對引子的設計,可以維持檢測的高靈敏度及高特異性。最後,再藉由核酸熔解曲線來達到多標的分析確認。經由前述幾項優點,以改進先前所述臨床上之不足並實現早期臨床檢測的目的。 | zh_TW |
| dc.description.abstract | Rapid and high sensitivity clinical diagnostic tools can improve disease detection and disease-spread control. Real-time PCR is recently used in clinical genetic detection , but its complex sample pretreatment and long detection time make it unsuitable for rapid clinical diagnosis. Thus , we propose a new diagnostic system based on surface plasmon resonance (SPR) angle shift , which is caused by performing loop-mediated isothermal amplification(LAMP) on target sequence on gold film. Furthermore , we perform melting curve analysis , which can cause different refractive index change in different target , to differentiate multiple target sequence. By using this new diagnostic system , we can achieve high sensitivity , high specificity , rapid and real-time multiplex detection. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T02:05:49Z (GMT). No. of bitstreams: 1 U0001-1608202013384800.pdf: 4943521 bytes, checksum: 3bb102fddc87dc10c69fbfde80f937fb (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 目錄 摘要 I ABSTRACT II 圖目錄 VI 表目錄 VIII 第一章 前言 1 1.1研究背景 1 1.1.1傳染病的爆發 1 1.1.2基因分析 3 1.1.3生物感測器之應用 4 1.2研究動機 5 1.3論文架構 6 第二章 文獻回顧與探討 7 2.1抗甲氧西林金黃色葡萄球菌(MRSA) 7 2.1.1 MRSA背景 7 2.1.2致病及抗藥機制 8 2.1.3檢測方式 9 2.2檢測技術 11 2.2.1基因檢測技術的發展 11 2.2.2多基因分析 13 2.2.3 LAMP反應及檢測 14 2.3生物感測器 16 2.3.1 SPR生物感測器的發展 16 2.3.2表面電漿子感測器反應機制 17 2.3.3表面電漿子感測器的優缺點 19 第三章 系統架構與實驗方法 21 3.1感測器軟硬體架構 21 3.1.1光學系統 21 3.1.2晶片設計 23 3.1.3加熱系統 25 3.1.4軟體系統 28 3.2 LAMP反應 29 3.2.1標的基因 29 3.2.2引子設計 29 3.2.3 SPR-LAMP反應條件 31 3.2.4 REAL-TIME LAMP反應條件 32 第四章 實驗結果 33 4.1 LAMP反應折射率變化 33 4.2加熱系統優化 34 4.4角度調變之溫度折射率變化 36 4.5 REAL-TIME LAMP分析 39 4.6 SPR-LAMP反應及核酸熔解曲線分析 41 第五章 結論與未來展望 44 第六章 參考資料 46 | |
| dc.language.iso | zh-TW | |
| dc.title | 多標的環形恆溫擴增法應用於表面電漿子感測器 | zh_TW |
| dc.title | Multiplex Loop Mediated Isothermal Amplification on Surface Plasmon Resonance Biosensor | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林致廷(Chih-Ting Lin),黃念祖(Nien-Tsu Huang) | |
| dc.subject.keyword | 表面電漿子共振,環形恆溫擴增法,核酸熔解曲線,生物感測器,共振角度位移, | zh_TW |
| dc.subject.keyword | Surface Plasmon Resonance,Angle-shift,Biosensor,Loop-mediated Isothermal Amplification,Methicillin-resistance Staphylococcus aureus, | en |
| dc.relation.page | 53 | |
| dc.identifier.doi | 10.6342/NTU202003576 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-17 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1608202013384800.pdf 未授權公開取用 | 4.83 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
