Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19527
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor陽毅平(Yee-Pieg Yang)
dc.contributor.authorWu-Chi Chenen
dc.contributor.author陳武祺zh_TW
dc.date.accessioned2021-06-08T02:03:37Z-
dc.date.copyright2016-04-15
dc.date.issued2015
dc.date.submitted2016-03-23
dc.identifier.citation[1] Y. Hori, 'Future vehicle driven by electricity and control-research on four-wheel-motored,' IEEE Transactions on Industrial Electronics, vol. 51, pp. 954-962, 2004.
[2] 'Chevrolet Spark EV,' Chevrolet, [Online]. Available: http://www.chevrolet.com/spark-ev-electric-vehicle.html. [Accessed 9 10 2015].
[3] 'Fiat 500e,' Fiat, [Online]. Available: http://www.fiatusa.com/en/500e/. [Accessed 9 10 2015].
[4] 'Kia Soul EV,' Kia, [Online]. Available: http://www.kia.com/us/en/vehicle/soul-ev/2016. [Accessed 9 10 2015].
[5] 'Volkswagen e-Golf,' Volkswagen, [Online]. Available: http://www.volkswagen.co.uk/new/e-golf-vii/home. [Accessed 9 10 2015].
[6] 'Nissan Leaf,' Nissan, [Online]. Available: http://www.nissanusa.com/electric-cars/leaf/. [Accessed 9 10 2015].
[7] 'Ford Focus Electric,' Ford, [Online]. Available: http://www.ford.com/cars/focus/trim/electric/. [Accessed 9 10 2015].
[8] 'Mercedes-Benz B-Class Electric Drive,' Mercedes-Benz, [Online]. Available: http://www.mbusa.com/mercedes/vehicles/class/class-B/bodystyle-EDV. [Accessed 9 10 2015].
[9] 'Smart Fortwo Electric Drive,' Smart, [Online]. Available: http://www.smartusa.com/models/electric-coupe. [Accessed 9 10 2015].
[10] 'BMW i3,' BMW, [Online]. Available: http://www.bmwusa.com/bmw/bmwi/i3. [Accessed 9 10 2015].
[11] 'Tesla Roadster,' Tesla Motors, [Online]. Available: http://my.teslamotors.com/roadster/specs. [Accessed 9 10 2015].
[12] 'Tesla Model S,' Tesla Motors, [Online]. Available: http://www.teslamotors.com/models. [Accessed 9 10 2015].
[13] 'Tesla Model X,' Tesla Motors, [Online]. Available: http://www.teslamotors.com/modelx. [Accessed 9 10 2015].
[14] 'Eliica性能表,' 慶應義塾大學電器電動車實驗室, [Online]. Available: http://www.eliica.com/project/eliica/spec.html. [Accessed 23 9 2012].
[15] 'Mitsubishi Colt EV,' Mitsubishi Motors, [Online]. Available: http://www.mitsubishi-motors.com/corporate/about_us/technology/environment/e/miev.html. [Accessed 23 9 2012].
[16] 梁誌明, “輪內馬達懸吊系統之分析與設計,” 台灣大學碩士論文, 台北, 2010.
[17] 'xDrive Technology,' BMW, [Online]. Available: http://www.bmw.com/com/en/insights/technology/technology_guide/articles/mm_xdrive.html. [Accessed 9 10 2015].
[18] 'SH-AWD Technology,' Honda, [Online]. Available: http://www.honda-taiwan.com.tw/auto/technology_SH_AWD.html. [Accessed 9 10 2015].
[19] 'Automobile Technology,' Mitsubishi Motors, [Online]. Available: http://www.mitsubishi-motors.com/en/spirit/technology/library/ayc.html. [Accessed 9 10 2015].
[20] 'Technology Overview,' Protean Electric, [Online]. Available: http://www.proteanelectric.com/overview/. [Accessed 9 10 2015].
[21] S. K. Tseng, T. H. Liu, J. W. Hsu, L. R. Ramelan and E. Firmansyah, 'Implementation of online maximum efficiency tracking control for a dual-motor drive system,' IET Electric Power Applications, vol. 9, no. 7, pp. 449-458, Aug 2015.
[22] X. Yuan and J. Wang, 'Torque distribution strategy for a front- and rear-wheel-driven electric vehicle,' IEEE Transactions on Vehicular Technology, vol. 61, no. 8, pp. 3365-3374, Oct 2012.
[23] H. Fujimoto, and S. Harada, 'Model-based range extension control system for electric vehicles with front and rear driving-braking force distributions,' IEEE Transactions on Industrial Electronics, vol. 62, no. 5, pp. 3245-3254, May 2015.
[24] J. Lee, J. Choi, K. Yi, M. Shin and B. Ko, 'Lane-keeping assistance control algorithm using differential braking to prevent unintended lane departures,' Control Engineering Practice, vol. 23, pp. 1-13, Feb 2014.
[25] K. Nam, H. Fujimoto and Y. Hori, 'Advanced motion control of electric vehicles based on robust lateral tire force control via active front steering,' IEEE-ASME Transactions on Mechatronics, vol. 19, no. 1, pp. 289-299, Feb 2014.
[26] Z. Shuai, H. Zhang, J. Wang, J. Li and M. Ouyang, 'Combined AFS and DYC control of four-wheel-independent-drive electric vehicles over CAN network with time-varying delays,' IEEE Transactions on Vehicular Technology, vol. 63, no. 2, pp. 591-602, Feb 2014.
[27] J. Park, H. Jeong, I. G. Jang and S. H. Hwang, 'Torque distribution algorithm for an independently driven electric vehicle using a fuzzy control method,' Energies, vol. 8, no. 8, pp. 8537-8561, Aug 2015.
[28] H. Mirzaeinejad and M. Mirzaei, 'Optimization of nonlinear control strategy for anti-lock braking system with improvement of vehicle directional stability on split mu roads,' Transportation Research Part C-Emerging Technologies, vol. 46, pp. 1-15, Sep 2014.
[29] T. Chung and K. Yi, 'Design and evaluation of side slip angle-based vehicle stability control scheme on a virtual test track,' IEEE Transactions on Control Systems Technology, vol. 14, no. 2, pp. 224-234, Mar 2006.
[30] N. Mohan, T. Undeland and W. Robbins, Power electronics: converters, applications, and design, 3rd ed., John Wiley & Sons, Inc., 2003.
[31] R. R. Wang, Y. Chen, D. Feng, X. Y. Huang and J. M. Wang, 'Development and performance characterization of an electric ground vehicle with independently actuated in-wheel motors,' Journal of Power Sources, vol. 196, no. 8, pp. 3962-3971, Apr 2011.
[32] M. F. Rahman and L. Zhong, 'Comparison of torque responses of the interior permanent magnet motor under PWM current and direct torque controls,' Annual Conference on IEEE Industrial Electronics Society, vol. 3, pp. 1464-1470, 1999.
[33] Y. Hori, Y. Toyoda and Y. Tsuruoka, 'Traction control of electric vehicle based on the estimation of road surface condition-basic experimental results using the test EV UOT Electric March,' Power Conversion Conference, vol. 1, pp. 1-8, 1997.
[34] S. I. Sakai and Y. Hori, 'Advanced vehicle motion control of electric vehicle based on the fast motor torque response,' Proceedings of the International Symposium on Advanced Vehicle Control, pp. 729-736, 2000.
[35] L. Guzzella and A. Amstutz, 'CAE tools for quasi-static modeling and optimization of hybrid powertrains,' IEEE Transactions on Vehicular Technology, vol. 48, pp. 1762-1769, 1999.
[36] L. Guzzella and A. Sciarretta, Vehicle propulsion systems, Springer, 2007.
[37] R. Rajamani, Vehicle dynamics and control, Springer, 2012.
[38] 'Mitsubishi Official Website,' [Online]. Available: http://coltplus.mitsubishi-motors.com.tw/. [Accessed 25 8 2015].
[39] D. Ambuhl and L. Guzzella, 'Predictive reference signal generator for hybrid electric vehicles,' IEEE Transactions on Vehicular Technology, vol. 58, pp. 4730-4740, 2009.
[40] N. Kim, S. Cha and H. Peng, 'Optimal control of hybrid electric vehicles based on pontryagin's minimum principle,' IEEE Transactions on Control Systems Technology, vol. 19, pp. 1279-1287, 2011.
[41] Y. Shtessel, C. Edwards, L. Fridman and A. Levant, Sliding mode control and observation, Springer Science+Business Media, 2014.
[42] S. Inagaki, I. Kushiro and M. Yamamoto, 'Analysis on vehicle stability in critical cornering using phase-plane method,' JSAE Review, vol. 16, no. 2, pp. 216-216, Apr 1995.
[43] S. Shen, J. Wang, P. Shi and G. Premier, 'Nonlinear dynamics and stability analysis of vehicle plane motions,' Vehicle System Dynamics, vol. 45, no. 1, pp. 15-35, Jan 2007.
[44] H. F. Grip, L. Imsland and T. A. Johansen, 'Vehicle sideslip estimation design, implementation, and experimental validation,' IEEE Control Systems Magazine, vol. 29, no. 5, pp. 36-52, Oct 2009.
[45] L. Imsland, T. A. Johansen, T. I. Fossen, H. F. Gripa, J. C. Kalkkuhlb and A. Suissab, 'Vehicle velocity estimation using nonlinear observers,' Automatica, vol. 42, no. 12, pp. 2091-2103, Dec 2006.
[46] H. Guo, H. Chen and F. Xu, 'Implementation of EKF for vehicle velocities estimation on FPGA,' IEEE Transactions on Industrial Electronics, vol. 60, no. 9, pp. 3823-3835, Sep 2013.
[47] H. L. Zhao, Y. Z. Liu and H. Chen, 'Design of a nonlinear observer for vehicle velocity estimation and experiments,' IEEE Transactions on Control Systems Technology, vol. 19, no. 3, pp. 664-672, May 2011.
[48] Z. Wu, M. Yao and H. Ma, 'Low-cost antenna attitude estimation by fusing inertial sensing and two-antenna GPS for vehicle-mounted satcom-on-the-move,' IEEE Transactions on Vehicular Technology, vol. 62, no. 3, pp. 1084-1096, Mar 2013.
[49] 葉智榮, “先進轉向系統發展趨勢介紹,” 財團法人車輛研究測試中心, 彰化, 2010.
[50] M. Doumiati, C. A. Victorino and A. Charara, 'Onboard real-time estimation of vehicle lateral tire-road forces and sideslip angle,' IEEE-ASME Transactions on Mechatronics, vol. 16, no. 4, pp. 601-614, Aug 2011.
[51] T. Hsiao, 'Robust estimation and control of tire traction forces,' IEEE Transactions on Vehicular Technology, vol. 62, no. 3, pp. 1378-1383, Mar 2013.
[52] J. X. Jin and D. G. Yin, 'Estimation of lateral tire-road forces and sideslip angle for electric vehicles using interacting multiple model filter approach,' Journal of the Franklin Institute-Engineering and Applied Mathematics, vol. 352, no. 2, pp. 686-707, Feb 2015.
[53] C. Geng, L. Mostefai, M. Denai and Y. Hori, 'Direct yaw-moment control of an in-wheel-motored electric vehicle based on body slip angle fuzzy observer,' IEEE Transactions on Industrial Electronics, vol. 56, no. 5, pp. 1411-1419, May 2009.
[54] J. Kennedy and R. C. Eberhart, 'Particle swarm optimization,' in IEEE International Conference on Neural Networks, NJ, 1995.
[55] R. C. Eberhart and J. Kennedy, 'A new optimizer using particle swarm theory,' in Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, 1995.
[56] 李維平, 黃郁授 且 戴彰廷, “自適應慣性權重改良粒子群演算法之研究,” 中原大學資訊管理研究所碩士論文, 桃園, 2008.
[57] 林柳絮, “基於粒子群最佳化之強健PID控制器設計與應用,” 國立台灣大學碩士論文, 台北, 2011.
[58] J. Kennedy, 'The behavior of particles,' in Evolutionary Programming VII: Proceedings of the Seventh Annual Conference on Evolutionary Programming, CA, 1998.
[59] Y. L. Zheng, L. H. Ma, L. Y. Zhang and J. X. Qian, 'Empirical study of particle swarm optimizer with an increasing inertia weight,' in 2003 Congress on Evolutionary Computation, Canberra, 2003.
[60] 陳佳旻, “複合動力電動車即時節能動力分配策略,” 國立台灣大學碩士論文, 台北, 2013.
[61] Y. Peng and X. Yang, 'Comparison of various double-lane change manoeuvre specifications,' Vehicle System Dynamics, vol. 50, no. 7, pp. 1157-1171, Mar 2012.
[62] Y. Chen, J. K. Hedrick and K. Guo, 'A novel direct yaw moment controller for in-wheel motor electric vehicles,' Vehicle System Dynamic, vol. 51, no. 6, pp. 925-942, Jun 2013.
[63] 宋家安, “多動力馬達電動車即時節能驅動及回充煞車力矩分配策略,” 國立台灣大學碩士論文, 台北, 2015.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19527-
dc.description.abstract傳統的車輛控制器採用串聯式節能與安全策略,將車身穩定系統與動力分配系統獨立進行設計,但這樣的設計方法沒有考慮各系統的交互作用,本研究透過馬達特性說明車身穩定系統所產生的直接偏擺力矩,會使動力分配系統的能耗表現變差。
本研究提出兼顧轉向安全之節能動力分配策略,採用並聯式節能與安全策略,目的是在車輛穩定性佳時降低直接偏擺力矩而改善能耗,因此以β-γ相位穩定圖判斷車輛穩定性,同時整合滑模控制,設計本研究之車身穩定系統。
透過模型迴路與硬體迴路平台驗證本研究策略,實驗結果顯示相較於串聯式節能與安全策略,並聯式節能與安全策略能夠為粒子群最佳化動力分配帶來1%~5%的續航力提升; 能為固定比例動力分配帶來4.5%~7%的續航力提升。
故本研究的策略能確保車輛控制器以更小的直接偏擺力矩帶來轉向行駛的穩定性,在兼顧轉向安全的條件下,提升車輛轉向行駛時的節能表現。
zh_TW
dc.description.abstractTraditional vehicle controller adopts a series energy saving and safty (SES) strategy, which independently designs vehicle stability system and power distribution system. However, traditional design method didn’t consider the interaction of each system. So, this research uses characteristics of motor to illustrate that direct yaw moment produced from vehicle stability system adversely affects the energy saving performance of the power distribution system.
This research proposes energy saving strategy with steering stability for an electric vehicle driven by multiple motors, which adopts a parallel energy saving and safety (PES) strategy, and the goal is that the controller reduces direct yaw moment to achieve energy consumption improvement when vehicle has good stability. This research uses β-γ phase plane to judge vehicle stability, and it integrates with sliding mode control to design a vehicle stability system.
This research verifies the strategy by model in the loop (MIL) and hardware in the loop (HIL) platform. Experimental results show that compare with SES strategy, PES strategy saves 1%~5% of energy when vehicle uses particle swarm optimization (PSO) as power distribution; and 4.5%~7% of energy when constant proportion (CP) is used as power distribution.
Thus, the strategy of this research makes sure the controller can produce smaller direct yaw moment to stabilize the vehicle. The vehicle can then remain stable and achieve higher energy-saving performance.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:03:37Z (GMT). No. of bitstreams: 1
ntu-104-R02522831-1.pdf: 5234251 bytes, checksum: 571731c00d3884d2a2ddee59f0662dea (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員審定書 ii
誌謝 iv
中文摘要 vi
Abstract viii
目錄 x
圖目錄 xiv
表目錄 xxiii
符號表 xxv
第一章、緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 2
1.2.1 電動車之發展 2
1.2.2 車身穩定控制策略 6
1.3 本文貢獻 9
1.4 論文架構 11
第二章、系統動態模型 13
2.1 多動力馬達電動車架構 13
2.2 馬達及馬達驅動器 14
2.2.1 馬達驅動之操作象限 14
2.2.2 前置15-kW直流無刷馬達 15
2.2.3 後輪7-kW永磁同步馬達 17
2.2.4 馬達力矩響應模擬 19
2.2.5 馬達消耗能量及回充能量估算 21
2.3 傳動齒輪箱 22
2.4 輪胎模型 23
2.4.1 輪胎縱向模型 24
2.4.2 輪胎側向模型 26
2.5 車體動態模型 28
2.5.1 車體縱向動態 29
2.5.2 車體側向與偏擺動態 31
2.5.3 車輛規格 33
2.6 電池模型 34
第三章、行車動力分配問題分析 38
3.1 總力矩需求與轉向動態 38
3.1.1 總力矩需求之達成 38
3.1.2 直接偏擺力矩需求之達成 42
3.2 動力分配情形 44
3.3 直接偏擺力矩對於節能動力分配之影響 49
3.4 滑模控制 52
3.4.1 簡介 52
3.4.2 原理與設計步驟 53
第四章、車身穩定策略 56
4.1 穩態轉向 56
4.2 相位穩定圖分析 59
4.3 並聯式節能與安全策略下之直接偏擺力矩控制器 65
4.4 滑差控制器 67
4.4.1 輪胎力矩與滑差之動態方程式 67
4.4.2 ABS控制器設計 68
4.4.3 TCS控制器設計 70
4.5 控制器參數之獲得 72
第五章、即時節能動力分配策略與車身穩定系統整合設計 80
5.1 粒子群最佳化法 80
5.1.1 簡介 80
5.1.2 演算方式 81
5.1.3 演算流程 83
5.1.4 動力分配問題中之應用 84
5.2 節能策略與車身穩定系統整合架構 85
5.3 驅動力矩分配與回充煞車力矩分配判斷流程 87
5.4 驅動力矩分配策略流程 89
5.5 回充煞車力矩分配策略流程 105
5.6 PSO參數設定 137
第六章、MIL行車模擬與分析 139
6.1 MIL模擬架構介紹 139
6.1.1 雙車道切換(double lane change, DLC) 139
6.1.2 行車循環(driving cycle) 140
6.1.3 行車模擬架構 141
6.1.4 固定比例之力矩分配方式 143
6.2 MIL車身穩定系統驗證 145
6.2.1 縱向動態穩定性驗證 145
6.2.2 側向動態穩定性驗證 147
6.3 MIL行車模擬節能驗證 157
6.3.1 PSO即時節能動力分配 158
6.3.2 固定比例Rf1動力分配 166
6.4 MIL結果討論 174
第七章、HIL實現兼顧轉向安全之節能動力分配策略 177
7.1 HIL平台架構 177
7.2 HIL平台之硬體介紹 178
7.2.1 dSPACE MicroAutoBox 178
7.2.2 動力計馬達即動力計負載馬達 179
7.3 HIL行車模擬實驗節能驗證 181
7.3.1 PSO即時節能動力分配 182
7.3.2 固定比例Rf1動力分配 190
7.4 HIL行車節能性比較與結果討論 197
7.5 HIL行車模擬實驗總結 199
第八章、結論與未來展望 201
8.1 結果討論 201
8.2 未來展望 203
參考文獻 204
dc.language.isozh-TW
dc.title多動力馬達電動車兼顧轉向安全之節能動力分配策略zh_TW
dc.titleEnergy Saving Strategy with Steering Stability for an Electric Vehicle Driven by Multiple Motorsen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李綱(Kang Li),李承和(Cheng-Ho Lee),陳柏全(Bo-Chiuan Chen)
dc.subject.keyword電動車,車身穩定,節能,β-γ相位穩定圖,滑模控制,zh_TW
dc.subject.keywordElectric vehicle,vehicle stability,energy saving,β-γ phase plane,sliding mode control,en
dc.relation.page211
dc.identifier.doi10.6342/NTU201600139
dc.rights.note未授權
dc.date.accepted2016-03-23
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
Appears in Collections:機械工程學系

Files in This Item:
File SizeFormat 
ntu-104-1.pdf
  Restricted Access
5.11 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved