Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19514
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳正平(Jen-Ping Chen)
dc.contributor.authorTzu-Hsien Kuoen
dc.contributor.author郭子仙zh_TW
dc.date.accessioned2021-06-08T02:02:53Z-
dc.date.copyright2016-04-28
dc.date.issued2016
dc.date.submitted2016-04-26
dc.identifier.citationAndré, F., Jonard, M., and Ponette, Q.: Influence of species and rain event characteristics on stemflow volume in a temperate mixed oak–beech stand, Hydrolo.l Proces., 22, 4455-4466, 10.1002/hyp.7048, 2008.
Angevine, W. M., Bazile, E., Legain, D., and Pino, D.: Land surface spinup for episodic modeling, Atmos. Chem. Phys., 14, 8165-8172, 2014.
Betts, A.K.and Ball, J. H.: FIFE surface climate and site-average dataset 1987–89. J. Atmos. Sci., 55, 1091–1108, 1998.
Beven, K., and Germann, P.: Macropores and water flow in soils, Water Resour. Res., 18, 1311-1325, 1982.
Blackmon, M., and Coauthors: The Community Climate System Model. Bulletin of the American Meteoro. Soci., 82, 2357-2376, 2001.
Boone, A. and Wetzel, P. J.: Issues related to low resolution modeling of soil moisture: experience with the PLACE model, Global Planet. Chang., 13, 161-181, 1996.
Brooks, J. R, Meinzer, F. C., Coulombe, R. and Gregg, J.: Hydraulic redistribution of soil water during summer drought in two contrasting Pacific Northwest coniferous forests. Tree Physiology, 22, 1107-1117, 2002.
Budyko, M. I.: Climate and Life, Academic Press, New York, 1974.
Böhm, W.: Methods of studying root systems, Springer-Verlag, 1979.
Chase, T. N., Pielke, R. A., Kittel, T. G. F., Nemani, R., and Running, S. W.: Sensitivity of a general circulation model to global changes in leaf area index, J. Geophys. Res.: Atmos., 101, 7393-7408, 1996.
Chase, T. N., Pielke Sr, R. A., Kittel, T. G. F., Nemani, R. R., and Running, S. W.: Simulated impacts of historical land cover changes on global climate in northern winter, Clim. Dyn., 16, 93-105, 2000.
Chen, Y.-Y.: Investigating the Seasonal Variability of Surface Heat and Water Vapor Fluxes with Eddy Covariance Techniques: a Subtropical Evergreen Forest as an Example, Doctoral, Graduate Institute of Hydrological and Oceanic Sciences, National Central University, 149 pp., 2012.
Cheruy, F., Campoy, A., Dupont, J. C., Ducharne, A., Hourdin, F., Haeffelin, M. et al.: Combined infuence of atmospheric physics and soil hydrology on the simulated meteorology at the SIRTA atmospheric observatory. Clim. Dyn., 40, 2251–2269, 2013.
Clapp, R.B. and Homberger, G.M.: Empirical equations for some soil hydraulic properties, Water Resour. Res., 14: 601-604, 1978.
Cook, B.I., Puma, M.J. and Krakauer, N.Y.: Irrigation induced surface cooling in the context of modern and increased greenhouse gas forcing. Clim. Dyn., 37, 1587-1600, 2011.
de Goncalves, L. G. G., Shuttleworth, W. J., Burke, E. J., Houser, P., Toll, D. L., Rodell, M. and Arsenault, K.: Toward a South America Land Data Assimilation System: Aspects of land surface model spin-up using the Simplified Simple Biosphere, J. Geophys. Res., 111, D17110, 2006.
Dorman, J. L., and Sellers, P. J.: A Global climatology of albedo, roughness length and stomatal resistance for atmospheric general circulation models as represented by the Simple Biosphere Model (SiB), J. App. Meteo., 28, 833-855, 1989.
Findell, K. L., and Eltahir, E. A. B.: An analysis of the soil moisture-rainfall feedback, based on direct observations from Illinois. Water Resour. Res., 33, 725– 735, 1997.
Ek, M. B., and Holtslag, A. A. M.: Influence of Soil Moisture on Boundary Layer Cloud Development. J. Hydrometeo., 5(1), 86-99, 2004.
Eltahir, E. A. B.: A soil moisture rainfall feedback mechanism 1. Theory and observations. Water Resour. Res., 34, 765–776, 1998.
Entekhabi, D., Rodriguez-Iturbe, I. and Castelli, F.: Mutual interaction of soil moisture state and atmospheric processes. J. Hydro.,184, 3–17, 1996.
Gerke, H.: Bypass flow in soil, in: Encyclopedia of Agrophysics, edited by: Gliński, J., Horabik, J., and Lipiec, J., Encyclopedia of Earth Sciences Series, Springer Netherlands, 100-105, 2014.
Good, S. P., Noone, D., and Bowen, G.: Hydrologic connectivity constrains partitioning of global terrestrial water fluxes, Science, 349(6244), 175–177, 2015.
Goutorbe, J.-P., J. Noilhan, C. Valancogne, and Cuenca, R. H.: Soil moisture variations during HAPEX-MOBILHY, Annals of Geophysics, 7, 415-426, 1989.
Goutorbe, J. P.: A Critical assessment of the Samer network accuracy, in: Land Surface Evaporation, edited by: Schmugge, T., and André, J.-C., Springer New York, 171-182, 1991.
Goutorbe, J. P., and Tarrieu, C.: HAPEX-MOBILHY data base, in: Land Surface Evaporation, edited by: Schmugge, T., and André, J.-C., Springer New York, 403-410, 1991.
Harper A, Baker, I. T., Denning, A. S., Randall, D. A., Dazlich, D., Branson, M.: Impact of evapotranspiration on dry season climate in the Amazon forest. J. Clim. 27, 574–591, 2014.
Henderson-Sellers, A., Pitman, A. J., Love, P. K., Irannejad, P. and Chen, T. H.: The Project for Intercomparison of Land Surface Parameterization Schemes (PILPS): Phases 2 and 3. Bull. Amer. Meteor. Soc., 76, 489-503, 1995.
Henderson-Sellers, A.: Soil moisture simulation: Achievements of the RICE and PILPS intercomparison workshop and future directions. Global Planet. Chang., 13, Issues 1–4, 99-115, 1996.
Hohenegger, C., Brockhaus, P., Bretherton, C. S., and Schär, C.: The soil moisture–precipitation feedback in simulations with explicit and parameterized convection. J. Clim., 22,5003–5020, 2009.
Hurrell, J.W. et al.: The Community Earth System Model: A Framework for Collaborative Research. Bull. Amer. Meteor. Soc., 94, 1339–1360, 2013.
Jarvis, N. J., and Dubus, I. G.: State-of-the-art review on preferential flow, www.eu-footprint.org, 60 pp., 2006.
Jasechko, S., Sharp, Z. D., Gibson, J. J., Birks, S. J., Yi, Y. and Fawcett, P. J.: Terrestrial water fluxes dominated by transpiration, Nature, 496(7445), 2013.
Johnson, M. S., and Lehmann, J.: Double-funneling of trees: stemflow and root-induced preferential flow, Ecoscience, 13, 324-333, 2006.
Kollet, S. J., and Maxwell, R. M.: Capturing the influence of groundwater dynamics on land surface processes using an integrated, distributed watershed model. Water Resour. Res., 44, W02402, 2008.
Koster, R. D., Suarez, M. J., Higgins, R. W. and Van den Dool, H. M.: Observational evidence that soil moisture variations affect precipitation. Geophys. Res. Let., 30(5), 1241, doi:10.1029/2002GL016571,2003.
Koster, R. D., et al., 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 1138–1140.
Köhne, J. M., Köhne, S., and Šimůnek, J.: A review of model applications for structured soils: a) Water flow and tracer transport, J. Contaminant Hydro., 104, 4-35, 2009.
Kuo, T.-H., Chen, J.-P., and Xue, Y.: Stem–root flow effect on soil–atmosphere interactions and uncertainty assessments, Hydrol. Earth Syst. Sci., 20, 1509-1522, doi:10.5194/hess-20-1509-2016, 2016.
Levia, D. F., and Frost, E. E.: A review and evaluation of stemflow literature in the hydrological and biochemical cycles of forested and agricultural ecosystems., J. Hydro., 274, 1-29, 2003.
Levia, D. F., and Germer, S.: A review of stemflow generation dynamics and stemflow-environment interactions in forests and shrublands, Rev. Geophys., 53, 673–714, 2015.
Li, H., Robock, A. and Wild, M.: Evaluation of Intergovernmental Panel on Climate Change Fourth Assessment soil moisture simulations for the second half of the twentieth century, J. Geophys. Res., 112, D06106, 2007.
Li, J., He, B., Chen, Y., Huang, R., Tao, J., and Tian, T.: Root distribution features of typical herb plants for slope protection and their effects on soil shear strength, Trans.Chinese Soc. Agricul.l Engin., 29, 144-152, 2013.
Li, X.-Y., Yang, Z.-P., Li, Y.-T., and Lin, H.: Connecting ecohydrology and hydropedology in desert shrubs: stemflow as a source of preferential flow in soils, Hydrol. Earth Syst. Sci., 13, 1133-1144, 2009.
Li, X.-Y., Lin, H., and Levia, D. F.: Coupling ecohydrology and hydropedology at different spatio-temporal scales in water-limited ecosystems, in: Hydropedology, edited by: Lin, H., Academic Press, Boston, 737-758, 2012.
Liang, W.-L., Kosugi, K. i., and Mizuyama, T.: Heterogeneous soil water dynamics around a tree growing on a steep hillslope, Vadose Zone J., 6, 879-889, 2007.
Liang, W.-L., Kosugi, K. i., and Mizuyama, T.: A three-dimensional model of the effect of stemflow on soil water dynamics around a tree on a hillslope. J. Hydro., 366(1-4), 62-75, 2009.
Lim, Y.- J., Hong, J., Lee, T.-Y.: Spin-up behavior of soil moisture content over East Asia in a land surface model, Meteoro. Atmos. Physic., 118(3), 151-161, 2012.
Lin, M, Fan, K,, Wang H.: Somali Jet Changes under the Global Warming. J. Meteoro. Res., 22(4): 502-510, 2008
Lin, Y.-H., Lo, M.-H. and Chou, C.: Potential negative effects of groundwater dynamics on dry season convection in the Amazon River basin, Clim. Dyn. 46 (3), 1001-1013, 2016.
Liu, I.-W. Y., Waldron, L. J., and Wong, S. T. S.: Application of nuclear magnetic resonance imaging to study preferential water flow through root channels, Tomography of Soil-Water-Root Processes, 135-148, 1994.
Lo, M.-H., and Famiglietti, J. S.: The Effect of Water Table Dynamics on Land Surface Hydrologic Memory. J. Geophys. Res., 115, D22118,2010.
Lo, M.-H., and Famiglietti, J. S.: Irrigation in California’s Central Valley strengthens the southwestern U.S. water cycle. Geophys. Res. Let., 40, doi:10.1002/grl.50108,2013.
McGuffie, K., Henderson-Sellers, A., Zhang, H., Durbidge, T. B., and Pitman, A. J.: Global climate sensitivity to tropical deforestation, Global Planet. Chang, 10, 97-128, 1995.
Návar, J.: The causes of stemflow variation in three semi-arid growing species of northeastern Mexico, J. Hydro., 145, 175-190, 1993.
Neave, M., and Abrahams, A. D.: Vegetation influences on water yields from grassland and shrubland ecosystems in the Chihuahuan Desert, Earth Surface Processes and Landforms, 27, 2002.
Oki, T. and Kanae, S.: Global Hydrological Cycles and World Water Resources. Science, 313, 1068-1072, 2006.
Piao, S., Friedlingstein, P., Ciasis, P., de Noblet-Ducoudre, N., Labata, D. and Zaehle, S.: Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends. Proceedings of the National Academy of Sciences, 104, 15242–15247,2007.
Pielke, R.A.: Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Rev. Geophys., 39,151–177,2001.
Schär, C., Lüthi,D., Beyerle, U., and Heise, E.: The Soil–Precipitation Feedback: A Process Study with a Regional Climate Model. J. Clim., 12, 722–741, 1999.
Sellers, P. J., Mintz, Y., Sud, Y. C., and Dalcher, A.: A Simple Biosphere Model (SIB) for use within general circulation models, J. Atmos. Sci., 43, 505-531, 1986.
Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B., Lehner, I., Orlowsky, B., and Teuling, A. J.: Investigating soil moisture–climate interactions in a changing climate: A review, Earth-Science Rev., 99, 125-161, 2010.
Shao, Y., Anne, R. D., Henderson-Sellers, A., Irannejad, P., Thorton, P., Liang, X., Chen, T. H., Ciret, C., Desborough, C., Barachova, O., Haxeltine, A. and Ducharne, A.: Soil Moisture Simulation, A report of the RICE and PILPS Workshop. GEWEX Tech. Note, IGPO Publ. Ser., 14, 179 pp, 1995.
Siegert, C. M., and Levia, D. F.: Seasonal and meteorological effects on differential stemflow funneling ratios for two deciduous tree species, J. Hydro., 519, Part A, 446-454, 2014.
Tanaka, T., Taniguchi, M., and Tsujimura, M.: Significance of stemflow in groundwater recharge. 2: A cylindrical infiltration model for evaluating the stemflow contribution to groundwater recharge, Hydro. Proc., 10, 81-88, 1996.
Taniguchi, M., Tsujimura, M., and Tanaka, T.: Significance of stemflow in groundwater recharge. 1: Evaluation of the stemflow contribution to recharge using a mass balance approach, Hydro. Proc, 10, 71-80, 1996.
Taylor, C. M., de Jeu, R. A. M., Guichard, F., Harris, P. P., and Dorigo, W. A.: Afternoon rain more likely over drier soils. Nature, 489, 423-426,2012.
Vizy, E. K., and Cook, K. H.: Connections between the summer east African and Indian rainfall regimes, J. Geophys. Res., 108, 4510, 2003.
Wei, Z., Yoshimura, K., Okazaki, A., Kim, W., Liu, Z., and Yokoi, M.: Partitioning of evapotranspiration using high-frequency water vapor isotopic measurement over a rice paddy field, Water Resour. Res, 51, 3716–3729, 2015.
Wu, B.-Y.: Simulations of Land Surface Fluxes of the Lien Hua Chih Experimental Watershed with Land Process Models, Master, Graduate Institute of Hydrological and Oceanic Sciences, National Central University, 100 pp., 2011.
Xue, Y., Sellers, P., Kinter, J., and Shukla, J.: A simplified biosphere model for global climate studies. J. Climate, 4, 345-364, 1991.
Xue, Y., Zeng, F. J., and Adam Schlosser, C.: SSiB and its sensitivity to soil properties—a case study using HAPEX-Mobilhy data, Global Planet. Chang., 13, 183-194, 1996.
Yang, Y., Uddstrom, M., and Duncan, M.: Effects of short spin‐up periods on soil moisture simulation and the causes over New Zealand, J. Geophys. Res., 116, D24108,2011.
Yeh, P. J.-F., and Eltahir, E. A. B.: Representation of water table dynamics in a land surface scheme. Part I: Model development. J. Clim., 18, 1861–1880,2005.
Yeh, P. J.-F., and Famiglietti, J. S.:, Regional groundwater evapotranspiration in Illinois. J. Hydrometeo., 10, 464–478, 2009.
Zhang, Y.-Q., Q. K. Zhu, and Qi, S.: Root system distribution characteristics of plants on the terrace banks and their impact on soil moisture, Acta Ecologica Sinica, 25, 500-506, 2005.
Zhao, M., Pitman, A. J., and Chase, T.: The impact of land cover change on the atmospheric circulation, Clim. Dyn., 17, 467-477, 2001.
Zimmerman, R. and Bodvarsson, G.: A simple approximate solution for horizontal infiltration in a Brooks-Corey medium. Transport in Porous Media, 6, 195-205, 1991.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19514-
dc.description.abstract降水經由植物冠層重新分配的過程中,沿著樹葉、樹枝以及樹幹流動的部分稱為幹流 (stemflow)。幹流向土壤層流動過程中,會附著在根表面繼續流動,稱為幹根流 (stem-root flow)。透過幹根流的作用,能使降水較有效地流動到較為深層的土壤層,此一作用具有重新分配土壤溼度的效果。本研究將幹根流以參數化型式與既有的地表模式結合,測試幹根流在陸地與大氣交互作用過程中所扮演的角色。使用的模式為Simplified Simple Biosphere model (SSiB 1.0) 之一維離線地表模式以及Community Land Model (CLM v4.0) 與Community Earth System Model (CESM1.0.3) 耦合之全球模式。
使用SSiB model模擬台灣蓮華池測站以及位於法國地區之密集觀測計劃HAPEX-Mobilhy (HAPEX)之資料,結果顯示幹根流會使得表層土壤溼度降低,並使得中深層土壤溼度增加,土壤溼度再分配的現象會使得地表與大氣間交換之熱通量改變。較為溼熱氣候區的蓮華池測站之土壤溼度及環境溼度較高,因而在植物蒸散作用上反應較小,主要透過土壤表層蒸發作用降低所引起的土溫上升作用增加向大氣傳輸的可感熱通量。位於地中海氣候區的HAPEX測試中,則因位於乾溼區間的過渡區,蒸散作用對土壤溼度變化敏感。透過表層與中深層土壤溼度的改變,會導致蒸散作用有較劇烈的變化。此一改變也會進一步影響冠層之內以及土壤表層的溫度,因而對土壤表層蒸發產生作用。本研究第二部分使用CLM/CESM離線以及大氣陸地耦合模式探討在氣候尺度下幹根流與大氣之間的反饋作用。在耦合模式中,地表作用可反饋到大氣,包含透過熱力作用的局地效應以及透過動力過程改變環流的區域效應。結果顯示幹根流對於不同氣候、植物與土壤的作用相異。幹根流透過降低土壤蒸發量的過程可在較為潮溼的地區造成降雨的減少。較乾的土壤表面與減少的雨量之間可能具有正回饋作用。而在過渡區的變化性則較大,透過幹根流所形成的土壤溼度垂直交換可能具有更重要的效果。
zh_TW
dc.description.abstractRainfall that reaches the soil surface can rapidly move into deeper layers in the form of bulk flow through the stem-root flow mechanism, which leads to the vertical redistribution of soil moisture. In this study, the stem-root-flow (SRF) mechanism is formulated and coupled into two types of models to analyze its effects on land-atmospheric interactions. One is the Simplified Simple Biosphere model (SSiB 1.0); the other is the Community Land Model (CLM v4.0) couple with the Community Earth System Model (CESM1.0.3). The SSiB model running in single column mode was applied to simulate the Lien Hua Chih (LHC) measurements in Taiwan and HAPEX-Mobilhy (HAPEX) measurements conducted in France. The results show that SRF generally caused a decrease in soil moisture at the top soil layer and moistened the deeper soil layers. Such soil moisture redistribution results in substantial changes in heat flux exchange between land and atmosphere. In the humid environment at LHC, the effect of SRF on transpiration was minimal, and the main influence on energy flux was through reduced soil evaporation that led to higher soil temperature and greater sensible heat flux. In the Mediterranean environment of HAPEX, the SRF substantially affected plant transpiration and soil evaporation, as well as associated changes in canopy and soil temperatures. However, the effect on transpiration could either be positive or negative depending on the relative changes in the soil moisture of the top soil versus deeper soil layers due to SRF and soil moisture diffusion processes.
The CLM/CESM model running in uncoupled and coupled atmosphere-land mode was applied to focus on long-term climate. The results indicated that, when the atmospheric feedback processes are included, the response to SRF effect could be nonlinear and more distinct. Changes in heat flux can alter precipitation which in return controls the capacity of evapotranspiration in the coupled run. The net outcome includes on-site effects via thermodynamic processes and dynamic effects via circulation changes. These effects vary with climate conditions, vegetation cover, and soil type. SRF can alter the heat flux, generally causing increased sensible heat and reduced soil evaporation thus the latent heat. The global model results indicated the drier surface and less precipitation may have positive feedback in some humid regions. While in transition regions, the soil vertical exchange may be more important.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:02:53Z (GMT). No. of bitstreams: 1
ntu-105-F98229002-1.pdf: 13073700 bytes, checksum: dd71f288fe7a10a9c2826a17ca02d03a (MD5)
Previous issue date: 2016
en
dc.description.tableofcontentsVerification letter from the Oral Examination Committee ii
Acknowledgement iv
Abstract vi
Contents x
Table content xii
Figure content xiv
1. Introduction 1
2. Methodology 5
2.1 The stem-root flow parameterization 5
2.2 Land surface models description 11
2.3 Experimental design in SSiB uncoupled single column simulations 13
2.4 Experimental design in CESM uncoupled and coupled global simulation 17
3. Stem-root flow effect in SSiB uncoupled single column simulations 21
3.1 Soil moisture 21
3.2 Fluxes of moisture and energy between soil and atmosphere 23
3.3 Discussions 26
4. Stem-root flow effect in CESM global simulations 31
4.1 Uncoupled runs 31
4.2 Coupled runs 36
4.3 Discussions 46
5. Conclusion 51
5.1 Summary of model results 51
5.2 Discussions and future work 54
Reference 59
Tables 65
Figures 73
dc.language.isoen
dc.title幹根流對陸地與大氣交互作用的影響zh_TW
dc.titleStem-root flow effect on land-atmosphere interactionen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree博士
dc.contributor.oralexamcommittee許晃雄,羅敏輝,莊振義,謝正義,陳維婷
dc.subject.keyword幹流,根流,幹根流,土壤溼度,蒸發散,陸地與大氣交互作用,zh_TW
dc.subject.keywordstemflow,root flow,stem-root flow,soil moisture,evapotranspiration,land-atmosphere interaction,en
dc.relation.page123
dc.identifier.doi10.6342/NTU201600207
dc.rights.note未授權
dc.date.accepted2016-04-26
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept大氣科學研究所zh_TW
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
12.77 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved