請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19458完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 駱尚廉 | |
| dc.contributor.author | Meng-Jia Chen | en |
| dc.contributor.author | 陳孟加 | zh_TW |
| dc.date.accessioned | 2021-06-08T01:59:59Z | - |
| dc.date.copyright | 2016-07-06 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-06-21 | |
| dc.identifier.citation | 參考文獻
張提亮,潘綱,(2015),『全氟辛酸(PFOA)降解和礦化方法評述』,科學通報,17, 1574-1591. 李明潔、喻澤斌、陳穎、王莉、劉晴、劉鈺鑫、何麗麗,(2014),『TiO2光催化降解PFOA的反應動力學及機制研究』,環境科學,35, 2612-2619. 郭子寧,(2014),『以鐵改質活性碳結合過硫酸鹽系統降解全氟辛酸之研究』,碩士論文,國立臺灣大學環境工程學研究所。 吳怡君,(2013),『以過碘酸鹽結合超音波系統提升全氟辛酸降解之研究』,碩士論文,國立臺灣大學環境工程學研究所。 林宗龍,(2012),『利用活性碳催化過硫酸鹽在溫室下氧化全氟辛酸之研究』,碩士論文,國立臺灣大學環境工程學研究所。 張長,於茜,曾光明,陳朝猛,蔣敏,余健,(2011),『全氟辛酸(PFOA)紫外光化學降解特性與機理』,中國科學:化學,41, 964-975. 陳映竹,(2011),『以微波水熱法合成氧化鈦奈米管之吸附與光催化潛勢研究』,博士論文,國立臺灣大學環境工程學研究所。 李維豐、黃宛淇、廖述良,(2006),『我國全氟辛烷磺酸鹽管理制度與策略之探討』中華民國環境工程學會環境規劃與管理研究討會。 Adewuyi, Y. G., 2001. Sonochemistry: Environmental science and engineering applications. Industrial and Engineering Chemistry Research, 40, 4681-4715. Barbarossa, A., Masetti, R., Gazzotti, T., 2013. Perfluoroalkyl substances in human milk: A first survey in Italy. Environment International, 51, 27-30. Berlan, J., Mason, T. J., 1992. Sonochemistry-from research laboratories to industrial-plants. Ultrasonics, 30,203-212. Caliebe, C., Gerwinski, W., Huhnerfuss, H., Theobald, N., 2004. Occurrence of perfluorinated organic acids in the water of the north Sea. Organohalogen Compounds, 66, 4074-4078. Cao, M. H., Wang, B. B., Yu, H. S., Wang, L. L., Yuan, S. H., and Chen, J., 2010. Photochemical decomposition of perfluorooctanoic acid in aqueous periodate with VUV and UV light irradiation. Journal of Hazardous Materials, 179, 1143-1146. Chen, Y. C., Lo, S. L., Kuo, J., 2012. Effects of titanate nanotubes synthesized by a microwave hydrothermal method on photocatalytic decomposition of perfluorooctanoic acid. Water Research, 45, 4131-4140. Chen, J., Zhang, P., 2006. Photodegradation of perfluorooctanoic acid in water under irradiation of 254 nm light by use of persulfate, Water Science and Technology, 54, 317-325. De Bruyn, W. J., Shorter, J. A., Davidovits, P., Worsnop, D. R., Zahniser, M. S., Kolb, C. E., 1995. Uptake of haloacetyl and carbonyl halides by water surfaces, Environmental Science and Technology, 29, 1179-1185. Estrellan, C. R., Salim, C., Hinode, H., 2010. Photocatalytic decomposition of perfluorooctanoic acid by ion and niobium co-doped titanium dioxide. Journal of Hazardous Materials, 179, 79-83. Francisco, R. R., 1998. The role of carbon materials in heterogeneous catalysis. Carbon, 36, 159-175. Fujii, S., Polprasert, C., Tanaka, S., Lien, N. P. H., Qiu, Y., 2007. New POPs in the water environment: distribution, bioaccumulation and treatment of perfluorinated compounds – a review paper. Journal of Water Supply Research and Technology-Aquq, 56, 313-326. Fujii, Y., Yan, J. X., Harada, K. H., 2012. Levels and profiles of long-chain perfluorinated carboxylic acids in human breast milk and infant formulas in East Asia. Chemosphere, 86(3), 315-321. Giesy, J. P., Kannan, K., 2002. Perfluorochemical surfactants in the environment. Environmental Science and Technology, 36, 147A-152A. Gratzel, M., 2001. Photoelectrochemical cells. Nature, 414, 338-344. Hao, X. W., Li, L., Wang, J., Cao, Y., Liu, J. G., 2015. Status quo, uncertainties and trends analysis of environmental risk assessment for PFASs. Environmental Science, 36(8), 3106-3118. Harada, K., Koizumi, A., Saito, N., 2007. Historical and geographical aspects of the increasing perfluorooctanoate and perfluorooctane sulfonate contamination in human serum in Japan. Chemosphere, 66(2), 293-301. Hekster, F. M., Laane, R., Voogt, D., 2003. Environmental and toxicity effects of perfluoroalkylated substances. Reviews of Environmental Contamination and Toxicology, 179, 99-121. Herrmann, J. M., 1999. Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catalysis Today, 53, 115-129. Hoffmann, M. R., Martin, S. T., Choi, W., Bahnemannt, D. W., 1995. Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews, 95, 69-96. Holmström, K. E., Jarnberg, U., Bignert, A., 2005. Temporal trends of PFOS and PFOA in guillemot eggs from the Baltic Sea, 1968--2003. Environmental Science and Technology, 39, 80-84. Hori, H., Hayakawa, E., Einaga, H., Kutsuna, S., Koike, K., Ibusuki, T., Kiatagawa, H., Arakawa, R., 2004. Decomposition of environmentally persistent perfluorooctanoic acid in water by photochemical approaches. Environmental Science and Technology, 38, 6118-6124. Huang, C. C., Lo, S. L., Lien, H. L., 2013. Synergistic effect of zero-valent copper nanoparticles on dichloromethane degradation by vitamin B12 under reducing condition. Chemical Engineering Journal, 219, 311-318. Ingelido, A. M., Marra, V., Abballe, A., 2010. Perfluorooctanesulfonate and perfluorooctanoic acid exposures of the Italian general population. Chemosphere, 80(10), 1125-1130. Ji, K., Kim, S., Kho, Y., 2012. Serum concentrations of major perfluorinated compounds among the general population in Korea: dietary sources and potential impact on thyroid hormones. Environment International, 45, 78-85. Kannan, K., Corsolini, S., Falandysz, J., Oehme, G., Focardi, S., Giesy, J.P., 2002. Per- fluorooctanesulfonate and related fluorinated hydrocarbons in marine mammals, fishes, and birds from coasts of the Baltic and the Mediterranean seas. Environmental Science & Technology 36, 3210-3216. Kannan, K., Newsted, J. L., Holbrook, R.S., Giesy, J. P., 2002. Perfluorooctanesulfonate and related fluorinated hydrocarbons in mink and river otters from the United States. Environmental Science and Technology, 36, 2566-2571. Kong, J., Shi, S., Kong, L., Zhu, X., Ni, J., 2007. Preparation and characterization of PbO2 electrodes doped with different rare earth oxides. Electrochimica Acta, 53, 2048-2054. Kotronarou, A., Mills, G., Hoffmann, M. R., 1992. Decomposition of parathion in aqueous-solution by ultrasonic irradiation. Environmental Science and Technology, 26, 1460-1462. Lee, Y. C., Lo, S. L., Kuo, J., Huang, C. P., 2013. Promoted degradation of perfluorooctanic acid by persulfate when adding activated carbon. Journal of Hazardous Materials, 261, 463-469. Lee, Y. C., Chen, M. J., Huang, C. P., Kuo, J., Lo, S. L., 2016. Efficient sonochemical degradation of perfluorooctanoic acid using periodate. Ultrasonics Sonochemistry, 31, 499-505. Legan, R. W., 1982. Ultraviolet-light takes on Cpi Role. Chemical Engineering, 89, 95-100. Lemal, D. M., 2004. Perspective on fluorocarbon chemistry. Journal of Organic Chemistry, 69, 1-11. Li, L., Zhang, Y., Schultz, A. M., Liu, X., Salvador, P. A., Rohrer, G. S., 2012. Visible light photochemical activity of heterostructured PbTiO3-TiO2 core–shell particles. Catalysis Science and Technology, 2, 1945-1952. Li, M., Yu, Z., Liu, Q., Sun, Lei., Huang, Wenyu., 2016. Photocatalytic decomposition of perfluorooctanoic acid by noble metallic nanoparticles modified TiO2. Chemical Engineering Journal, 286, 232-238. Li, X., Zhang, P., Jin, L., Shao, T., Li, Z., Cao, J., 2012. Efficient photocatalytic decomposition of perfluorooctanoic acid by indium oxide and its mechanism. Environmental Science and Technology, 46, 5528-5534. Lien, H. L., Jhuo, Y. S., Chen, L. H., 2007. Effect of heavy metals on dechlorination of carbon tetrachloride by iron nanoparticles. Environmental Science and Technology, 24(1), 21-30. Lin, A. Y. C., Panchangam, S. C., Ciou, P. S., 2010. High levels of perfluorochemicals in Taiwan’s wastewater treatment plants and downstream rivers pose great risk to local aquatic ecosysems. Chemosphere, 80, 1167-1174. Lin, A. Y. C., Panchangam, S. C., Lo, C. C., 2009. The impact of semiconductor, electronics and optoelectronic induutries on downstream perfluorinated chemical contamination in Taiwanese rivers. Environmental Pollution, 157, 1365-1372. Minero, C., Lucchiari, M., Vione, D., Maurino, V., 2005. Fe(III)-enhanced sonochemical degradation of methylene blue in aqueous solution. Environmental Science and Technology, 39, 8936-8942. Moriwaki, H., Takagi, Y., Tanaka, M., Tsuruho, K., Okitsu, K., Maeda, Y., 2005. Sonochemical decomposition of perfluorooctane sulfonate and perfluorooctanoic acid. Environmental Science and Technology, 39, 3388-3392. Murruni, L., Conde, F., Leyva, G., Litter, M. I., 2008. Photocatalytic reduction of Pb(II) over TiO2: New insights on the effect of different electron donors. Applied Catalysis B: Environmental, 84, 563-569. Ochoa-Herrera, V., Sierra-Alvarez, R., 2008. Removal of perfluorinated surfactants by sorption onto granular activated carbon, zeolite and sludge. Chemosphere, 72, 1588-1593. OECD, 2002, Co-operation on Existing Chemicals – Hazard assessment of perfluorooctane sulfonate and its salts, Paris, 21 November 2002. Okamoto, K., Yasunori, Y., Hirok, T., Masashi, T., and Akira, T., 1985. Heterogeneous photocatalytic decomposition of phenol over TiO2 powder. Bulletin of The Chemical Society of Japan, 58, 2015-2022. Olsen, G. W., Burris, D. J., Ehresman, D. J., Froehlich, J. W., Seacat, A. M., Butenhoff, J. L., Zobel, L. R., 2007. Half-life of serum elimination of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanote in retired fluorochemical production workers. Environmental Health Perspectives, 115(9), 1298-1305. Ou, H. H., Lo, S. L., 2007. Effect of Pt/Pd-doped TiO2 on the photocatalytic degradation of trichloroethylene. Journal of Molecular Catalysis a-Chemical, 275, 200-205. Pan, Y. Y., Shi, Y. L., Wang, J. M., 2010. Concentrations of perfluorinated compounds in human blood from twelve cities in China. Environmental Toxicology and Chemistry, 29(12), 2695-2701. Panchangam, S. C., Lin, A. Y., Shaik, K. L., 2009. Decomposition of perfluorocarboxylic acids (PFCAs) by heterogeneous photocatalysis in acidic aqueous medium. Chemosphere, 77 (2), 242-248. Parshetti, G. K., Doong, R, 2010. Dechlorination and photodegradation of trichloroethylene by Fe/TiO2 nanocomposites in the presence of nickel ions under anoxic conditions. Applied Catalysis B: Environmental, 100, 116-123. Phan, L. A., Do, H. T., Lee, Y. C., Lo, S. L., 2013. Photochemical decomposition of perfluorooctanoic acids in aqueous carbonate solution with UV irradiation. Chemical Engineering Journal, 221, 258-263. Prevedouros, K., Cousins, I. T., Buck, R. C., Korzeniowski, S. H., 2006. Sources, fate and transport of perfluorocarboxylates. Environmental Science and Technology, 40(1), 32-44. Price, G. J., Ashokkumar, M., Cowan, T. D., Grieser, F., 2002. Sonoluminescence quenching by organic acids in aqueous solution: pH and frequency effects. Chemical Communications, 1740-1741. Rossner, A., Snyder, A., knappe, R. U., 2009. Removal of emerging contaminants of concern of by alternative adsorbents. Water Research, 43, 3787-3796. Sansotera, M., Persico, F., Pirola, C., Navarrini, W., Di Michele, A., Bianchi, C.L., 2014. Decomposition of perfluorooctanoic acid photocatalyzed by titanium dioxide: Chemical modification of the catalyst surface induced by fluoride ions. Applied Catalysis B, 148, 29-35. Serpone, N., Maruthamuthu, P., Pichat, P., Pelizzetti, E., Hidaka, H., 1995, Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol : chemical evidence for electron and hole transfer between coupled semiconductors. Journal of Photochemistry and Photobiology A: Chemistry, 85, 247-255. Tao, L., Kannan, K., Wong, C. M., 2008. Perfluorinated compounds in human milk from Massachusetts, U.S.A. Environmental Science and Technology, 2008, 42(8), 3096-3101. Tsuji, I., Kato, H., Kobayashi, H., Kudo, A., 2004. Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)(x)Zn2(1-x)S2 Solid solution photocatalysts with visible-light response and their surface nanostructures. Journal of the American Chemical Society, 126, 13406-13413. U.S. EPA., 2006. SAB review of EPA’s drift risk assessment of potential human health effects associated with PFOA and its salts. Office of the Administration Science Advisory Board, USA. Vecitis, C. D., Park, H., Cheng, J., Mader, B. T., Hoffmann, M. R., 2008. Kinetics and mechanism of the sonolytic conversion of the aqueous perfluorinated surfactants, perfluorooctanoate (PFOA), and perfluorooctane sulfonate (PFOS) into inorganic products. Journal of Physical Chemistry A, 112, 4261-4270. Vohra, M. S., Kim, S., Choi, W., 2003. Effects of surface fluorination of TiO2 on the photocatalytic degradation of tetranmetylammonium. Journal of Photochemistry and Photobiology A: Chemistry, 160, 56-60. Wang, Y., Zhang, P., 2011. Photocatalytic decomposition of perfluorooctanoic acid (PFOA) by TiO2 in the presence of oxalic acid. Journal of Hazardous Materials, 192, 1869-1875. Wang, Y., Zhang, P., Pan, G., Chen, H., 2008. Ferric ion mediated photochemical decomposition of perfluorooctanoic acid (PFOA) by 254nm UV light. Journal of Hazardous Materials, 160, 181-186. Wang, K. H., Hsieh, Y. H., Wu, C. H., Chang, C. Y., 2000. The pH and antion effects on the heterogeneous photocatalytic degradation of o-methylbenzoic acid in TiO2 aqueous suspension. Chemosphere, 40, 389-94. Xu, X. H., Zhang, Z. Z., Liu, W., 2009. Fabrication of superhydrophobic surfaces with perfluorooctanoic acid modified TiO2/polystyrene nanocomposites coating. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 341, 21-26. Yamashita, N., Kannan, K., Taniyasu, S., Horii, Y., Petrick, G., Gamo, T., 2005. A global survey of perfluorinated acids in oceans. Marine Pollution Bulletin, 51, 658-668. Yu, J., Hu, J., Tanaka, S., Fujii, S., 2009a. Perfluorooctne sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in sewage treatment plants, Water Research, 43, 2399-2408. Yu, Q., Zhang, R., Deng, S., Huang, J., Yu, G., 2009b. Sorption of perfluorooctane sulfonate and perfluorooctanoate on activated carbons and resin: kinetic and isotherm study. Water Research, 43, 1150-1158. Zhu, X., Castleberry, S. R., Nanny, M., Butler, E. C., 2005. Effects of pH and catalyst concentration on photocatalytic oxidation of aqueous ammonia and nitrite in titanium dioxide suspensions. Environmental Science and Technology, 39, 3784-3791. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19458 | - |
| dc.description.abstract | 全氟辛酸(PFOA,C7F15COOH)被廣泛地運用於工業和商業活動上,由於PFOA會對自然環境與水體造成嚴重危害,因此PFOA使用與處理上成為全球關注的議題。PFOA不能以傳統UV/TiO2光催化方法有效去除,因此本研究利用金屬改質TiO2觸媒進行光催化反應降解PFOA。有研究指出用金屬改質TiO2觸媒,表面上金屬顆粒具有捕捉電子效果,因此會延緩電子電洞再結合,進而提升光催化反應系統降解化合物之能力。本實驗以三種金屬改質TiO2觸媒表面(Fe-TiO2、Cu-TiO2與Pb-TiO2)與未表面改質TiO2觸媒進行光催化降解PFOA能力之比較,實驗結果顯示Pb-TiO2觸媒對PFOA光催化降解之去除率與去氟率擁有最高活性。在UV/ Pb-TiO2系統經過12 h光催化反應後,去除率與去氟率分別達到99.9%與22.4%。PFOA依序被降解為更短碳鏈著中間產物如全氟庚酸(PFHpA,C6F13COOH)、全氟己酸(PFHeA,C5F11COOH)、全氟戊酸(PFPeA,C4F9COOH)、七氟丁酸(PFBA,C3F7COOH)、五氟丙酸(PFPrA,C2F5COOH)和三氟乙酸(TFA,CF3COOH)與礦化成最終產物氟離子(F-)。利用擬一階動力(pseudo-first-order kinetics)模式對不同系統(UV/TiO2、UV/Fe-TiO2、UV/Cu-TiO2與UV/Pb-TiO2)之PFOA降解率數據進行模式分析,擬一階動力模式之反應速率kobs值分別為0.0158、0.0891、0.1837與0.5136 hr-1,在反應速率結果顯示UV/Fe-TiO2、UV/Cu-TiO2與UV/Pb-TiO2系統比UV/TiO2系統具有更高的活性針對PFOA之光催化降解之能力。本實驗金屬改質觸媒以光沉積法製備而成,之後分別利用掃描式電子顯微鏡、X光粉末繞射儀、以及紫外光-可見光光譜儀等做觸媒物化分析。實驗數據顯示,在UV/Fe-TiO2、UV/Cu-TiO2與UV/Pb-TiO2系統會產生捕捉電子效果,因此延緩光催化反應中電子電洞再結合,進而提升光催化降解PFOA之能力。 | zh_TW |
| dc.description.abstract | Perfluorooctanoic acid (PFOA, C7F15COOH) is widely used in industrial and commercial applications. It has become a global concern due to its widespread occurrence in water bodies and adverse environmental impact. PFOA could not be effectively removed by the conventional UV/TiO2 system. This study synthesized metal-modified TiO2 catalyst and used it as a catalyst with light irradiation for PFOA decomposition. It was found that the metal-TiO2 catalyst could produce traps to capture photo-induced electrons or holes that lead to better photocatalytic efficiencies. Comparing TiO2 and three types of metal-modified TiO2 (Fe-TiO2, Cu-TiO2 and Pb-TiO2), Pb-TiO2 exhibited the highest catalytic activity during PFOA decomposition and defluorination. After 12 h of reaction, the PFOA decomposition and defluorination efficiencies by the UV/Cu-TiO2 system reached 99% and 22%, respectively. PFOA was decomposed into fluoride ions (F-) and shorter perfluorinated carboxylic acids (PFCAs) such as C6F13COOH, C5F11COOH, C4F9COOH, C3F7COOH, C2F5COOH and CF3COOH. The pseudo-first-order kinetic was used to model the decomposition of PFOA. Rate constant values of PFOA decomposition for the UV/TiO2, UV/Fe-TiO2, UV/Cu-TiO2 and UV/Pb-TiO2 systems were 0.0158, 0.0891, 0.1837 and 0.5136 hr-1, respectively. The Fe-TiO2, Cu-TiO2 and Pb-TiO2 catalysts exhibited considerably higher activities than that of TiO2. The photocatalysts were prepared by a photodeposition synthesis method and were characterized by scanning electron microscopy with energy-dispersive X-ray, X-ray diffraction and UV-Vis spectrophotometry. The experimental results have demonstrated that the UV/Fe-TiO2, UV/Cu-TiO2 and UV/Pb-TiO2 systems could produce traps to capture photo-induced electrons, thereby reduce electron-hole recombination during photocatalytic reactions and consequently enhance the PFOA decomposition. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T01:59:59Z (GMT). No. of bitstreams: 1 ntu-105-D00541008-1.pdf: 3963320 bytes, checksum: faf363e7521353c019cdd5ef83082879 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 總目錄
口試委員會審定書 ii 誌謝 iii 摘要 iv ABSTRACT v 總目錄 vii 圖目錄 i 表目錄 i 第一章 緒論 1 第二章 文獻回顧 1 2.1 全氟化合物之污染及危害 1 2.1.1 全氟辛酸之物化特性 1 2.1.2 全氟化合物環境轉移與危害 4 2.2 臺灣全氟化合物之現況 12 2.3 全氟化合物之處理技術 15 2.3.1吸附法 15 2.3.2 超音波氧化法 17 2.3.3 光催化氧化法 20 第三章 材料與方法 31 3.1 研究架構 31 3.2 實驗試劑與設備 33 3.2.1. 實驗使用試劑 33 3.2.2. 實驗使用設備 34 3.3 材料製備 36 3.4 PFOA降解實驗 38 3.5 實驗操作參數 40 3.5.1. 光觸媒活性試驗 41 3.5.2. 批覆金屬濃度試驗 41 3.5.3. 光觸媒加藥劑量試驗 41 3.5.4. 初始pH值之影響試驗 42 3.5.5. 飽和氣體之影響試驗 42 3.5.6. 燈源影響試驗 42 3.6 實驗分析分法 43 3.6.1 高效液相層析儀 (High performance liquid chromatography, HPLC) 43 3.6.2 離子層析儀(Ion-chromatograph, IC) 45 3.7 觸媒特性分析 47 3.7.1 場發射槍掃描式電子顯微鏡/X射線能量分散光譜儀 47 3.7.2 場發射槍穿透式電子顯微鏡 48 3.7.3 X光粉末繞射儀 48 3.7.4 紫外光-可見光光譜儀 48 3.7.5 傅立葉紅外線光譜儀 49 3.7.6 化學分析影像能譜儀 49 第四章 結果與討論 51 4.1 光觸媒材料特性分析 51 4.1.1 SEM影像分析 52 4.1.2 TEM影像分析 61 4.1.3 XRD分析 63 4.1.4 XPS分析元素之價態 67 4.1.5 紫外可見光光譜分析 69 4.2 背景實驗 71 4.3光觸媒活性試驗 76 4.4批覆金屬濃度與光觸媒加藥劑量試驗 89 4.5 初始pH值之影響試驗 97 4.6 飽和氣體之影響試驗 102 4.7 燈源影響試驗 105 4.8 Pb-TiO2觸媒穩定性試驗 106 4.9 機制探討 108 第五章 結論與建議 114 5.1 結論 114 5.2 建議 116 參考文獻 119 附錄 131 圖目錄 圖 2-1 全球PFCs濃度分布圖 5 圖 2-2 海鷗蛋於波羅地海之PFOS濃度變化 8 圖 2-3 活性碳催化過硫酸鹽示意圖 17 圖 2-4 空穴泡之擴大與崩解示意圖 18 圖 2-5 超音波降解PFOA與PFOS機制圖 19 圖 2-6 光觸媒反應機制圖 22 圖 2-7 PFOA吸收光譜圖 25 圖 2-8 UV-Fenton系統降解PFOA反應機制圖 28 圖 2-9 In2O3與TiO2對PFOA吸附位置示意圖 29 圖 3-1 實驗流程架構圖 32 圖 3-2 紫外燈管(254 nm, 400W)波長分布 35 圖 3-3 可見光燈管(400~700 nm, 150W)波長分布 36 圖 3-4 光催化合成法示意圖(a)沒有添加草酸 (b) 添加草酸 38 圖 3-5 雙層外壁玻璃反應槽 39 圖 3-6 光催化反應裝置圖 40 圖 3-7 標準品5 mg/L之PFNA~TFA (C9~C2)之HPLC分析圖譜 44 圖 3-8 PFOA~TFA (C8~C2)之檢量線 45 圖 3-9 Fluoride ions之IC分析圖譜 47 圖 4-1 觸媒粉末顏色變化示意圖 52 圖 4-2 TiO2 SEM影像圖 53 圖 4-3 Fe-TiO2 SEM影像圖 54 圖 4-4 Cu-TiO2 SEM影像圖 55 圖 4-5 Pb-TiO2 SEM影像圖 56 圖 4-6 Fe-TiO2 SEM之Mapping影像圖 58 圖 4-7 Cu-TiO2 SEM之Mapping影像圖 59 圖 4-8 Pb-TiO2 SEM之Mapping影像圖 60 圖 4-9 TiO2 TEM影像圖 61 圖 4-10 Pb-TiO2 TEM影像圖 62 圖 4-11 TiO2與Fe-TiO2之XRD圖譜 (anatase (A), rutile (R), Fe0 (●)Fe3O4/Fe2O3(○)) 64 圖 4-12 TiO2與Cu-TiO2之XRD圖譜 (anatase (A), rutile (R), Cu0 (◆)與Cu2O(◇)) 65 圖 4-13 TiO2與Pb-TiO2之XRD圖譜 (anatase (A), rutile (R), Pb0 (●), PbO (◆)與 PbO2(◇).) 66 圖 4-14 Pb-TiO2之XPS圖譜(a) survey 67 圖 4-15 Pb-TiO2之XPS圖譜(b) Ti 2p 68 圖 4-17 TiO2與Pb-TiO2之紫外可見光光譜分析圖譜 71 圖 4-18 玻璃反應槽對PFOA之背景吸附實驗 72 圖 4-19 觸媒對PFOA之背景吸附實驗 73 圖 4-21 TiO2與Pb-TiO2之傅立葉紅外線光譜分析圖譜 76 圖 4-22 TiO2降解PFOA之降解率與去氟率 78 圖 4-23 TiO2降解PFOA之中間產物濃度變化 79 圖 4-24 Fe-TiO2降解PFOA之降解率與去氟率 80 圖 4-25 Fe-TiO2降解PFOA之中間產物濃度變化 81 圖 4-26 Cu-TiO2降解PFOA之降解率與去氟率 82 圖 4-27 Cu-TiO2降解PFOA之中間產物濃度變化 83 圖 4-28 Pb-TiO2降解PFOA之降解率與去氟率 84 圖 4-29 Pb-TiO2降解PFOA之中間產物濃度變化 85 圖 4-30 不同金屬披覆於TiO2表面比較觸媒活性 87 圖 4-31 光催化系統降解PFOA之反應循環機制圖 88 圖 4-32 分別利用不同鉛金屬披覆量降解PFOA 91 圖 4-33 (a)分別利用不同Pb-TiO2觸媒劑量降解PFOA之降解率(b)分別利用不同Pb-TiO2觸媒劑量降解PFOA之去氟率 93 圖 4-34 分別利用不同Pb-TiO2觸媒劑量降解PFOA 96 圖 4-35 Pb-TiO2觸媒在不同pH值下降解PFOA 98 圖 4-36 Pb-TiO2觸媒在不同pH值下降解PFOA之反應水溶液pH變化 99 圖 4-37 PFOA界達電位分析圖 100 圖 4-38 Pb-TiO2觸媒與PFOA在不同pH值水溶液之帶電性 102 圖 4-39 不同飽和氣體對Pb-TiO2觸媒降解PFOA之降解率與去氟率比較 103 圖 4-40 不同光源對Pb-TiO2觸媒降解PFOA之降解率與去氟率比較 106 圖 4-41 Pb-TiO2觸媒多次使用降解PFOA之降解率與去氟率比較 108 圖 4-42 Pb-TiO2過渡金屬觸媒光催化反應機制 109 圖 4-43 乙醇對UV/Pb-TiO2系統降解PFOA之影響 111 圖 4-44 Pb-TiO2過渡金屬觸媒光催化反應降解PFOA途徑 113 表目錄 表2-1 PFOA之物理與化學特性 2 表2-2 全氟辛烷磺酸及其鹽類和全氟辛基磺醯氟限制使用規範 3 表2-3 斯德哥摩爾公約對全氟鹽類限制使用規範 4 表2-4 全球PFCs製造與排放量 6 表2-5 人體血液與母乳之PFCs之含量 9 表2-6 挪威環保署禁止產品中使用PFOA規範 10 表2-7 國內環境及生物體中PFOS含量之調查結果 14 表2-8 化學鍵能及斷鍵所需之最大波長 26 表3-1 PFCs之HPLC分析方法之動相濃度梯度設計 44 表3-2 PFCs之HPLC分析方法之分析偵測極限 (單位: mg/L) 44 表4-1 SEM/EDS 表面元素比重分析與顆粒直徑分析結果 57 表4 2 XPS分析Pb-TiO2之元素比重 68 表4-3 Pb-TiO2不同鉛金屬披覆量與觸媒加藥劑量對PFOA之降解率與去氟率 94 表4-4 在光催化反應過程中Pb-TiO2觸媒之鉛離子釋出在反應溶液情形 97 表4-5 氧化還原電位 110 | |
| dc.language.iso | zh-TW | |
| dc.title | 以鉛、銅及鐵改質二氧化鈦在紫外光照射下降解全氟辛酸之研究 | zh_TW |
| dc.title | Decomposition of perfluorooctanoic acid by ultraviolet light irradiation with Pb、Cu and Fe-modified titanium dioxide | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 林進榮,胡景堯,席行正,林逸彬 | |
| dc.subject.keyword | 全氟辛酸,光催化,鐵,銅,鉛,分解,二氧化鈦, | zh_TW |
| dc.subject.keyword | perfluorooctanoic acid,photocatalysis,Fe,Cu,Pb,decomposition,titanium dioxide, | en |
| dc.relation.page | 142 | |
| dc.identifier.doi | 10.6342/NTU201600415 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2016-06-21 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 3.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
