請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19415
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 駱尚廉 | |
dc.contributor.author | Ting-Wei Kang | en |
dc.contributor.author | 康婷瑋 | zh_TW |
dc.date.accessioned | 2021-06-08T01:57:58Z | - |
dc.date.copyright | 2016-07-25 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-06-30 | |
dc.identifier.citation | 1. 歐陽嶠暉(2011),下水道工程學,長松文化興業股份有限公司,台北。
2. 楊萬發(2002),水及廢水處理化學,茂昌圖書有限公司,台北。 3. 曹怡(2006),曹怡、張建成著,光化學技術,新文京開發,台北。 4. 申洋文、車雲霞(1998),鈦分類,第八卷,科學出版社,北京。 5. 周德瑜(2001),四氯化鈦之控制水解研究,碩士論文,國立中央大學化學工程研究所。 6. 李中光等人(2011),淺談垃圾滲出水處理技術,桃園縣大學校院產業環保技術服務團-環保簡訊。 7. 台北市年鑑(2013),山豬窟掩埋場復育為山水綠生態公園。 8. 台北市政府環境保護局山豬窟垃圾衛生掩埋場環境品質監測網.環境監測數據資料庫。 9. Ait Ramdane-Terbouche, C., Terbouche, A., Djebbar, S., and Hauchard, D. (2014). 'Electrochemical sensors using modified electrodes based on copper complexes formed with Algerian humic acid modified with ethylenediamine or triethylenetetramine for determination of nitrite in water.' Talanta, 119, 214-225. 10. Arnal, P., Corriu, R. J., Leclercq, D., Mutin, P. H., and Vioux, A. (1996). 'Preparation of anatase, brookite and rutile at low temperature by non-hydrolytic sol–gel methods.' Journal of Materials Chemistry, 6(12), 1925-1932. 11. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., and Taga, Y. (2001). 'Visible-light photocatalysis in nitrogen-doped titanium oxides.' science, 293(5528), 269-271. 12. Asilian, H., Rezaei, A., Mortazavi, S., and Khavanin, A. (2006). 'The removal of color and COD from wastewater containing water base color by coagulation process.' International Journal of Environmental Science & Technology, 3(2), 153-157. 13. Aziz, H. A., Alias, S., Adlan, M. N., Faridah, Asaari, A. H., and Zahari, M. S. (2007). 'Colour removal from landfill leachate by coagulation and flocculation processes.' Bioresource technology, 98(1), 218-220. 14. Banwart, S. A. (1999). 'Reduction of iron (III) minerals by natural organic matter in groundwater.' Geochimica et Cosmochimica Acta, 63(19), 2919-2928. 15. Barlaz, M., Ham, R., Schaefer, D., and Isaacson, R. (1990). 'Methane production from municipal refuse: A review of enhancement techniques and microbial dynamics.' Critical Reviews in Environmental Science and Technology, 19(6), 557-584. 16. Berger, S., and Mann, J. (2001). 'Landfill gas Primer-An overview for environmental health professionals.' Department of Health and Human Services, Agency for Toxic Substances and Disease Registry (ATSDR), Division of Health Assessment and Consultation.[updated: 1 November 2001. 17. Calace, N., Liberatori, A., Petronio, B., and Pietroletti, M. (2001). 'Characteristics of different molecular weight fractions of organic matter in landfill leachate and their role in soil sorption of heavy metals.' Environmental pollution, 113(3), 331-339. 18. Chen, C., Bai, H., and Chang, C. (2007). 'Effect of plasma processing gas composition on the nitrogen-doping status and visible light photocatalysis of TiO2.' The Journal of Physical Chemistry C, 111(42), 15228-15235. 19. Chiang, K., Lim, T. M., Tsen, L., and Lee, C. C. (2004). 'Photocatalytic degradation and mineralization of bisphenol A by TiO2 and platinized TiO2.' Applied Catalysis A: General, 261(2), 225-237. 20. Dean, J. A. (1985). 'Lange's handbook of chemistry.' 21. Derjaguin, B. (1940). 'On the repulsive forces between charged colloid particles and on the theory of slow coagulation and stability of lyophobe sols.' Transactions of the Faraday Society, 35, 203-215. 22. Di Paola, A., Bellardita, M., and Palmisano, L. (2013). 'Brookite, the Least Known TiO2 Photocatalyst.' Catalysts, 3(1), 36-73. 23. Diebold, U. (2003). 'The surface science of titanium dioxide.' Surface science reports, 48(5), 53-229. 24. Dong, F., Guo, S., Wang, H., Li, X., and Wu, Z. (2011). 'Enhancement of the Visible Light Photocatalytic Activity of C-Doped TiO2Nanomaterials Prepared by a Green Synthetic Approach.' The Journal of Physical Chemistry C, 115(27), 13285-13292. 25. Edzwald, J. K., and Tobiason, J. E. (1999). 'Enhanced coagulation: US requirements and a broader view.' Water Science and Technology, 40(9), 63-70. 26. El Saliby, I., Okour, Y., Shon, H. K., Kandasamy, J., Lee, W. E., and Kim, J.-H. (2012). 'TiO2 nanoparticles and nanofibres from TiCl4 flocculated sludge: Characterisation and photocatalytic activity.' Journal of Industrial and Engineering Chemistry, 18(3), 1033-1038. 27. Ghafari, S., Aziz, H. A., Isa, M. H., and Zinatizadeh, A. A. (2009). 'Application of response surface methodology (RSM) to optimize coagulation-flocculation treatment of leachate using poly-aluminum chloride (PAC) and alum.' Journal of hazardous materials, 163(2-3), 650-656. 28. Ghezzar, M. R., Abdelmalek, F., Belhadj, M., Benderdouche, N., and Addou, A. (2007). 'Gliding arc plasma assisted photocatalytic degradation of anthraquinonic acid green 25 in solution with TiO2.' Applied Catalysis B: Environmental, 72(3-4), 304-313. 29. Gibbs, G., Tobin, J. M., and Guibal, E. (2003). 'Sorption of Acid Green 25 on chitosan: influence of experimental parameters on uptake kinetics and sorption isotherms.' Journal of Applied Polymer Science, 90(4), 1073-1080. 30. González, M. G., and Salvador, P. (1992). 'The influence of oxygen vacancies on the kinetics of water photoelectrolysis at (001) n-TiO 2 rutile.' Journal of Electroanalytical Chemistry, 325(1), 369-376. 31. Gratzel, M., Kiwi, J., Kalyanasundaram, K., and Philp, J. (1983). 'Photoelectrochemical system and a method of using the same.' Google Patents. 32. Guldbrand, L., Jönsson, B., Wennerström, H., and Linse, P. (1984). 'Electrical double layer forces. A Monte Carlo study.' The Journal of chemical physics, 80(5), 2221-2228. 33. Hadj Salah, N., Bouhelassaa, M., Bekkouche, S., and Boultii, A. (2004). 'Study of photocatalytic degradation of phenol.' Desalination, 166, 347-354. 34. Imran, Q., Hanif, M., Riaz, M., Noureen, S., Ansari, T., and Bhatti, H. (2012). 'Coagulation/Flocculation of tannery wastewater using immobilized chemical coagulants.' Journal of applied research and technology, 10(2), 79-86. 35. Jiang, S.-j. (2002). 'The Meaning of UV~ 2~ 5~ 4 as an Organic Matter Monitoring Parameter in Water Supply & Wastewater Treatment.' JOURNAL-CHONGQING JIANZHU UNIVERSITY, 24(2), 61-65. 36. Johnson, P. N., and Amirtharajah, A. (1983). 'Ferric chloride and alum as single and dual coagulants.' Journal (American Water Works Association), 232-239. 37. Jones, M. N., and Bryan, N. D. (1998). 'Colloidal properties of humic substances.' Advances in Colloid and Interface Science, 78(1), 1-48. 38. Kačiulis, S., Mattogno, G., Napoli, A., Bemporad, E., Ferrari, F., Montenero, A., and Gnappi, G. (1998). 'Surface analysis of biocompatible coatings on titanium.' Journal of Electron Spectroscopy and Related Phenomena, 95(1), 61-69. 39. Kang, K.-H., Shin, H. S., and Park, H. (2002). 'Characterization of humic substances present in landfill leachates with different landfill ages and its implications.' Water research, 36(16), 4023-4032. 40. Kerndorff, H., and Schnitzer, M. (1980). 'Sorption of metals on humic acid.' Geochimica et Cosmochimica Acta, 44(11), 1701-1708. 41. Kim, H.-C., Yu, M.-J., and Han, I. (2006). 'Multi-method study of the characteristic chemical nature of aquatic humic substances isolated from the Han River, Korea.' Applied Geochemistry, 21(7), 1226-1239. 42. Kjeldsen, P., Barlaz, M. A., Rooker, A. P., Baun, A., Ledin, A., and Christensen, T. H. (2002). 'Present and Long-Term Composition of MSW Landfill Leachate: A Review.' Critical Reviews in Environmental Science and Technology, 32(4), 297-336. 43. Kurniawan, T. A., Lo, W. H., and Chan, G. Y. (2006). 'Physico-chemical treatments for removal of recalcitrant contaminants from landfill leachate.' Journal of hazardous materials, 129(1-3), 80-100. 44. La Mer, V. K. (1964). 'Coagulation symposium introduction.' Journal of Colloid Science, 19(4), 291-293. 45. LaMer, V. K., and Healy, T. W. (1963). 'Absorption-flocculation reactions of macromolecules at the solid-liquid interface.' Review of pure and applied chemistry, 112-133. 46. Lee, B. C., Kim, S., Shon, H. K., Vigneswaran, S., Kim, S. D., Cho, J., Kim, I. S., Choi, K. H., Kim, J. B., Park, H. J., and Kim, J. H. (2008). 'Aquatic toxicity evaluation of TiO2 nanoparticle produced from sludge of TiCl4 flocculation of wastewater and seawater.' Journal of Nanoparticle Research, 11(8), 2087-2096. 47. Li, X., Zhao, Q., and Hao, X. (1999). 'Ammonium removal from landfill leachate by chemical precipitation.' Waste management, 19(6), 409-415. 48. Millot, N., Granet, C., Wicker, A., Faup, G., and Navarro, A. (1987). 'Application of GPC processing system to landfill leachates.' Water Research, 21(6), 709-715. 49. Monje-Ramirez, I., and Orta de Velasquez, M. T. (2004). 'Removal and transformation of recalcitrant organic matter from stabilized saline landfill leachates by coagulation-ozonation coupling processes.' Water Res, 38(9), 2358-2366. 50. Morris, J. K., and Knocke, W. R. (1984). 'Temperature effects on the use of metal-ion coagulants for water treatment.' Journal (American Water Works Association), 74-79. 51. Na, S. H., Shon, H. K., Kim, J. B., Park, H. J., Cho, D. L., Saliby, I. E., and Kim, J. H. (2010). 'Recycling of excess sludge using titanium tetrachloride (TiCl4) as a flocculant aid with alkaline-thermal hydrolysis.' Journal of Industrial and Engineering Chemistry, 16(1), 96-100. 52. Okour, Y., El Saliby, I., Shon, H. K., Vigneswaran, S., Kim, J. H., Cho, J., and Kim, I. S. (2009). 'Recovery of sludge produced from Ti-salt flocculation as pretreatment to seawater reverse osmosis.' Desalination, 247(1-3), 53-63. 53. Oskoei, V., Dehghani, M. H., Nazmara, S., Heibati, B., Asif, M., Tyagi, I., Agarwal, S., and Gupta, V. K. (2016). 'Removal of humic acid from aqueous solution using UV/ZnO nano-photocatalysis and adsorption.' Journal of Molecular Liquids, 213, 374-380. 54. Packham, R. (1965). 'Some studies of the coagulation of dispersed clays with hydrolyzing salts.' Journal of Colloid Science, 20(1), 81-92. 55. Pushpalatha, T., and Lokeshappa, B. (2015). 'The Use of Alum, Ferric Chloride and Titanium tetrachloride as Coagulants in Treating Landfill Leachate.' 56. Renou, S., Givaudan, J. G., Poulain, S., Dirassouyan, F., and Moulin, P. (2008). 'Landfill leachate treatment: Review and opportunity.' Journal of hazardous materials, 150(3), 468-493. 57. Saha, N. C., and Tompkins, H. G. (1992). 'Titanium nitride oxidation chemistry: An X‐ray photoelectron spectroscopy study.' Journal of Applied Physics, 72(7), 3072-3079. 58. Schulten, H.-R., and Schnitzer, M. (1993). 'A state of the art structural concept for humic substances.' Naturwissenschaften, 80(1), 29-30. 59. Shin, J., Spinette, R., and O’melia, C. (2008). 'Stoichiometry of coagulation revisited.' Environmental science & technology, 42(7), 2582-2589. 60. Shon, H., Vigneswaran, S., Kandasamy, J., Zareie, M., Kim, J., Cho, D., and Kim, J.-H. (2009). 'Preparation and characterization of titanium dioxide (TiO2) from sludge produced by TiCl4 flocculation with FeCl3, Al2 (SO4) 3 and Ca (OH) 2 coagulant aids in wastewater.' Separation Science and Technology, 44(7), 1525-1543. 61. Shon, H., Vigneswaran, S., Kim, I. S., Cho, J., Kim, G., Kim, J., and Kim, J.-H. (2007). 'Preparation of titanium dioxide (TiO2) from sludge produced by titanium tetrachloride (TiCl4) flocculation of wastewater.' Environmental science & technology, 41(4), 1372-1377. 62. Simpson, A. J. (2002). 'Determining the molecular weight, aggregation, structures and interactions of natural organic matter using diffusion ordered spectroscopy.' Magnetic Resonance in Chemistry, 40(13), S72-S82. 63. Stanforth, R., Ham, R., Anderson, M., and Stegmann, R. (1979). 'Development of a synthetic municipal landfill leachate.' Journal (Water Pollution Control Federation), 1965-1975. 64. Suffet, I. H., and MacCarthy, P. (1989). Aquatic humic substances. Influence of fate and treatment of pollutants, The American Chemical Society. 65. Tatsi, A., and Zouboulis, A. (2002). 'A field investigation of the quantity and quality of leachate from a municipal solid waste landfill in a Mediterranean climate (Thessaloniki, Greece).' Advances in Environmental Research, 6(3), 207-219. 66. Tatsi, A. A., Zouboulis, A. I., Matis, K. A., and Samaras, P. (2003). 'Coagulation–flocculation pretreatment of sanitary landfill leachates.' Chemosphere, 53(7), 737-744. 67. Turner, J. (1981). 'An introduction to the theory of catalytic reactors.' Catalysis Science and Technology, 1, 43-86. 68. Turro, N. J. (1991). Modern molecular photochemistry, University science books. 69. Van Doveren, H., and Verhoeven, J. (1980). 'XPS spectra of Ca, Sr, Ba and their oxides.' Journal of Electron Spectroscopy and Related Phenomena, 21(3), 265-273. 70. Verwey, E., and Overbeek, J. T. G. (1948). 'Theory of Stability of Lyophobic Solids.' Elsevier, Amsterdam. 71. Von Wandruszka, R., Ragle, C., and Engebretson, R. (1997). 'The role of selected cations in the formation of pseudomicelles in aqueous humic acid.' Talanta, 44(5), 805-809. 72. Wang, C.-C., and Ying, J. Y. (1999). 'Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals.' Chemistry of Materials, 11(11), 3113-3120. 73. Wang, W.-F., Hu, C.-L., and Hsieh, Y.-H. (2015). 'Preparation of TiO2 from Recycling Coagulation Sludge and Its Applicability on Photocatalytic Degradation of Dye Acid Red 27.' Journal of Chemical Engineering of Japan, 48(4), 262-267. 74. Wang, X., and Lim, T.-T. (2010). 'Solvothermal synthesis of C–N codoped TiO2 and photocatalytic evaluation for bisphenol A degradation using a visible-light irradiated LED photoreactor.' Applied Catalysis B: Environmental, 100(1), 355-364. 75. Wang, Z.-p., Zhang, Z., Lin, Y.-j., Deng, N.-s., Tao, T., and Zhuo, K. (2002). 'Landfill leachate treatment by a coagulation–photooxidation process.' Journal of hazardous materials, 95(1), 153-159. 76. Warwick, P., Hall, A., Pashley, V., and Bryan, N. (2001). 'Investigation of the permeability of humic molecules using zeta potential measurements.' Chemosphere, 45(3), 303-307. 77. Xu, J., Gong, P., and Qin, X. (2009). 'Research on hydrolysis of TiCl 4 characteristic.' Petrochem. Ind. Appl, 28(6), 13-15. 78. Yuan, J., Chen, M., Shi, J., and Shangguan, W. (2006). 'Preparations and photocatalytic hydrogen evolution of N-doped TiO2 from urea and titanium tetrachloride.' International Journal of Hydrogen Energy, 31(10), 1326-1331. 79. Yue, B., Zhou, Y., Xu, J., Wu, Z., Zhang, X., Zou, Y., and Jin, S. (2002). 'Photocatalytic degradation of aqueous 4-chlorophenol by silica-immobilized polyoxometalates.' Environmental science & technology, 36(6), 1325-1329. 80. Zhao, Y. X., Gao, B. Y., Shon, H. K., Cao, B. C., and Kim, J. H. (2011). 'Coagulation characteristics of titanium (Ti) salt coagulant compared with aluminum (Al) and iron (Fe) salts.' Journal of hazardous materials, 185(2-3), 1536-1542. 81. Zhao, Y. X., Gao, B. Y., Shon, H. K., Kim, J. H., and Yue, Q. Y. (2011). 'Effect of shear force, solution pH and breakage period on characteristics of flocs formed by Titanium tetrachloride (TiCl4) and Polyaluminum chloride (PACl) with surface water treatment.' Journal of hazardous materials, 187(1-3), 495-501. 82. Zhao, Y. X., Gao, B. Y., Shon, H. K., Wang, Y., Kim, J. H., and Yue, Q. Y. (2011). 'The effect of second coagulant dose on the regrowth of flocs formed by charge neutralization and sweep coagulation using titanium tetrachloride (TiCl4).' Journal of hazardous materials, 198, 70-77. 83. Zouboulis, A. I., Xiao-Li, C., and Katsoyiannis, I. A. (2004). 'The application of bioflocculant for the removal of humic acids from stabilized landfill leachates.' Journal of Environmental Management, 70(1), 35-41. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19415 | - |
dc.description.abstract | This study aimed to use titanium tetrachloride (TiCl4) as coagulant to remove humic acid (HA) and kaolinite which represent organic matters and inorganic matters, respectively. The efficiency of coagulation for five target parameters (turbidity, colority, UV254, COD, and TOC) were employed and considered in this study. Moreover, the leachate withdrawn from Sanjuku Landfill located in Taipei, Taiwan was tested with TiCl4. After coagulation process, the sludge was dehydrated in an oven overnight at 105℃, and then calcined at a final temperature of 550℃ to produce HA-TiO2 (HA: humic acid) and LC-TiO2 (LC: leachate). These photocatalysts were characterized in terms of SEM, EDS, XRD, UV/Vis.-DRS and XPS. The assessment of the catalytic activity was performed by photocatalysis of acid green 25 (AG 25) dye.
The optimum conditions were found to be 61 mg/L TiCl4 and pH ≤ 11 for 100 ppm HA. On the other hands, kaolinite (100-1000 mg/L) cannot be removed after coagulation-flocculation process due to the low pH value resulted from TiCl4 hydrolysis. However, when HA and kaolinite coexisted, kaolinite can be well removed from the flocs during the adsorption/sweep coagulation process. In addition, the zeta potential showed that the sludge after coagulation process is close to zero. When adding 1.12 g/L coagulant into leachate, and the colority, UV254, COD, and TOC removals at 1.12 g/L TiCl4 were 60%, 50%, 55%, and 20%, respectively. The UV254/DOC value of leachate withdrawn from Sanjuku Landfill is 1.18 L/mg-m. It clearly showed that the organic matters in the leachate were difficult to be removed by coagulation-flocculation process and resulted to the low TOC removals. In photocatalyst characteristic analysis, in terms of the particle size, shape, and crystal structures of HA-TiO2 was similar to P25, and the redshift phenomenon of the former was found by UV/Vis.- DRS. Nevertheless, only the particle size and shape were found similar to P25 from LC-TiO2. The crystal structures were quite different from P25 and even brookites phase were showed. Eventually, the results showed that AG 25 can be removed from photocatalytic reaction with HA-TiO2 and the degradation and mineralization rate were 25% and 20%, respectively. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T01:57:58Z (GMT). No. of bitstreams: 1 ntu-105-R03541111-1.pdf: 4911346 bytes, checksum: 583c06a90a86eb7034c1da87ba0cc54e (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 致謝 I
摘要 II Abstract IV 目錄 VI 圖目錄 IX 表目錄 XII 第一章 緒論 1 1-1 研究緣起 1 1-2研究目的 2 第二章 文獻回顧 3 2-1 混凝膠凝 3 2-1-1 電雙層理論 3 2-1-2 混凝膠凝機制 5 2-1-3 混凝劑種類 6 2-2 四氯化鈦 8 2-2-1 四氯化鈦基本特性 8 2-2-3 污泥回收再利用 10 2-3 腐植酸 11 2-3-1 天然有機物 11 2-3-2 腐植酸基本特性 11 2-3-3 腐植酸分佈與危害 12 2-4 垃圾滲出水 14 2-4-1 垃圾滲出水之產生 14 2-4-2垃圾滲出水之組成及特性 15 2-4-3 垃圾滲出水處理 16 2-4-4 混凝膠凝相關研究 18 2-5光催化反應 20 2-5-1光化學反應 20 2-5-2 光化學反應類型 20 2-5-3光催化反應概述 21 2-5-4 光催化反應機制 22 2-6 二氧化鈦 23 2-6-1二氧化鈦基本特性 23 2-6-2二氧化鈦光催化機制 25 第三章 材料方法 26 3-1 實驗藥品 26 3-1-1 混凝膠凝實驗 26 3-1-2 光催化實驗 26 3-1-3 儀器校正 26 3-2 實驗儀器與設備 27 3-2-1 混凝膠凝實驗 27 3-2-2 光觸媒製備 27 3-2-3 光催化實驗 28 3-2-4 分析儀器 28 3-3 實驗操作方法 29 3-3-1 研究架構 29 3-3-2 混凝膠凝實驗 32 3-3-3 垃圾滲出水實場應用 33 3-3-4 污泥回收之光觸媒製備 33 3-3-5 光催化實驗 35 3-4 分析項目 36 3-4-1 光觸媒特性分析 36 3-4-2 水樣分析 40 第四章 結果與討論 42 4-1 腐植酸溶液之混凝膠凝 42 4-1-1混凝劑量之影響 42 4-1-2 初始pH值之影響 49 4-2 有機及無機溶液混凝 55 4-2-1高嶺土溶液之混凝結果 55 4-2-2 高嶺土與腐植酸之混凝結果 57 4-3垃圾滲出水之混凝結果 65 4-3-1 採樣背景 65 4-3-2 滲出水水樣背景分析 66 4-3-3四氯化鈦混凝實驗 66 4-3-4 最佳混凝劑量試驗 66 4-4觸媒特性分析 76 4-4-1 場發射掃描式電子顯微分析 76 4-4-2 能量散佈分析儀分析 80 4-4-3 紫外光可見光光譜分析 82 4-4-4 高解析X光繞射分析 83 4-4-5 化學分析電子能譜儀 86 4-5光催化實驗 92 4-5-1 酸性綠25全波長圖譜 92 4-5-2 光催化反應 93 第五章 結論與建議 96 5-1 結論 96 5-2建議 98 參考文獻 99 附錄 107 | |
dc.language.iso | zh-TW | |
dc.title | TiCl4混凝劑去除有機物與無機物及實場應用可行性之研究 | zh_TW |
dc.title | Study of TiCl4 on Coagulation of Organic and Inorganic Matters and Field Application | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林進榮,胡景堯 | |
dc.subject.keyword | 四氯化鈦,混凝膠凝,垃圾滲出水,二氧化鈦, | zh_TW |
dc.subject.keyword | Coagulation and flocculation,Leachate,Titanium dioxide,Titanium tetrachloride, | en |
dc.relation.page | 108 | |
dc.identifier.doi | 10.6342/NTU201600596 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2016-06-30 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 4.8 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。