請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19370
標題: | 以統計方法規劃股票放空之策略 A Statistical Shorting Strategy |
作者: | Yi-Chun Liu 劉怡均 |
指導教授: | 許耀文(Yao-Wen Hsu) |
關鍵字: | 融券放空,融券回補,縱貫性研究,混合效應邏吉斯迴歸模型,停損點, Selling short,Short covering,Panel study,Mixed effects logistic regression model,Stop-loss point, |
出版年 : | 2016 |
學位: | 碩士 |
摘要: | 現今社會之投資管道日益漸增,其中股票放空即利用融券之機制向授信機構 融券,先行於股票市場賣出,待日後股價下跌時進行融券回補,此投資方式不僅 說明股市看空亦可獲利,打破單向市場之限制,融券保證金之訂定亦顯示投資者 可利用較低的資本獲取相同的利潤,也就是信用交易的槓桿效應。
本研究欲規劃一完整之股票放空策略以提供投資者在重要之決策點有效且即 時之投資建議,當預測的股價趨勢為大幅下跌,則建議投資者進行股票放空,反 之亦然。本研究參考 (Seneca, 1967)等研究,文獻指出融券餘額與未來股價在統計 上呈顯著的負相關,此外,比較過去曾有炒作行為之股票與穩定成長之股票,由 歷史數據顯示具炒作行為之股票其董監持股比例與十大股東持股比例在股價最高 點前已有出脫持股的情形,此為炒作類型股票之特性之一,另外列舉股價漲跌與 成交量增減之純價量變因以作為待篩選之重要變因,以縱貫性研究分析 2009 年十 月至 2013 年十月間台灣上市與上櫃公司股票之週資料。由於影響短期內未來股價 之因素瞬息萬變,且容易受人為操控與市場環境影響,因此本研究將短期內未來 股價分為兩個類別,一類是價格將大幅下跌,故要融券放空者;另一類是價格保 持平穩,甚至是上漲,不進行融券放空者,另外,融券放空策略中包含停損點與 期望投資報酬率標準之設定。 本研究同時考量股票資料之縱向與橫向之關係,因此設定為混合效應邏吉斯 迴歸模型,出象僅有價格下跌與價格上漲兩種分類,經過一百次的重複抽樣,每 次分層抽樣五十筆作為建立模型之基礎,最終模型預測價格分類之平均準確率為 72.34%,平均陽性預測值為 44.13%,若完全依據預測結果進行虛擬投資,平均報 酬率為 11.08%,平均年化報酬率則為 30.19%,準確率與報酬率結果均佳,陽性 預測值亦大幅超越投資虧損之標準,但仍有 0.19 的機率為虧損的投資組合。 本研究之股票放空策略預測模型之計算簡易,且節省投資人對於眾多投資標 的之前置作業分析時間,例如對於各公司詳細財務基本狀況之調查與比較,此外, 抽樣樣本之各項指標如 McFadden pseudo R2、MCC 與 ROC 曲線下之面積 AUC 值 皆不差,亦通過皮爾森卡方適合度檢定及 Hosmer-Lemeshow 適合度檢定,因此根 據研究結果顯示,本研究之股票放空策略在統計上具顯著之效益。 Many kinds of investment channels have sprung up these years. One of these is to sell short in the stock market. The most important concept of shorting is to sell short with high price and to cover it as the price collapses. Therefore, while investors expect the price to fall down, they may sell short at the decision point and vice versa. The purpose of this study is to help investors forming a shorting mechanism which includes stop-loss point and proper time for short covering. Under longitudinal study, the best set of predictor variables includes the maximal price-rising rate, the price-falling rate and the acceleration of volume. The output of mixed effects logistic regression model shows both the predicted price-classification in the near future and the investment advice. After one- hundred-time stratified sampling, the average accuracy rate is 72.34%, the average positive predictive value is 44.13%, the average return is 11.08%, the average annualized return is 30.19%, and may still make a loss in series of investments with probability 0.19. To summarize, it’s an easy and time-saving strategy for shorting with statistical significance according to the research. |
URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19370 |
DOI: | 10.6342/NTU201600619 |
全文授權: | 未授權 |
顯示於系所單位: | 統計碩士學位學程 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 8.41 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。