請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19356
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王逸平(Yi-Ping Wang) | |
dc.contributor.author | Yu-Hsueh Wu | en |
dc.contributor.author | 吳昱學 | zh_TW |
dc.date.accessioned | 2021-06-08T01:55:10Z | - |
dc.date.copyright | 2016-08-26 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-07-12 | |
dc.identifier.citation | 1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA: Cancer J Clin 2015; 65: 87-108.
2. Bagan J, Sarrion G, Jimenez Y. Oral cancer: clinical features. Oral Oncol 2010; 46: 414-417. 3. Stransky N, Egloff AM, Tward AD et al. The mutational landscape of head and neck squamous cell carcinoma. Science 2011; 333: 1157-1160. 4. Kandoth C, Mclellan MD, Vandin F et al. Mutational landscape and significance across 12major cancer types. Nature 2013; 502: 333-339. 5. Agrawal N, Frederick MJ, Pickering CR et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science 2011; 333: 1154-1157. 6. Moser R, Xu C, Ka M. Functional kinomics identifies candidate therapeutic targets in head and neck cancer. Clin Cancer Res 2014; 20: 4274-4288. 7. Vriend LEM, Hamer PCDW, Noorden CJFV, Würdinger T. WEE1 inhibition and genomic instability in cancer. Biochim Biophys Acta 2013; 1836: 227-235. 8. Hamer PCDW, Mir SE, Noske D, Noorden CJFV, Wurdinger T. WEE1 kinase targeting combined with DNA-damaging cancer therapy catalyzes mitotic catastrophe. Clin Cancer Res 2011; 17: 4200-4207. 9. Do K, Doroshow JH, Kummar S. Wee1 kinase as a target for cancer therapy. Cell Cycle 2013; 12: 3159-3164. 10. Posthumadeboer J, Würdinger T, Graat HC et al. WEE1 inhibition sensitizes osteosarcoma to radiotherapy. BMC Cancer 2011; 11: 156-163. 11. Masaki T, Shiratori Y, Rengifo W et al. Cyclins and cyclin-dependent kinases: comparative study of hepatocellular carcinoma versus cirrhosis. Hepatology 2003; 37: 534-543. 12. Iorns E, Lord CJ, Grigoriadis A et al. Integrated functional, gene expression and genomic analysis for the identification of cancer targets. PLoS One 2009; 4: 5120-5130. 13. Yoshida T, Tanaka S, Mogi A, Shitara Y, Kuwano H. The clinical significance of Cyclin B1 and Wee1 expression in non-small-cell lung cancer. Ann Oncol 2004; 15: 252-56. 14. Mir SE, Hamer PCDW, Krawczyk PM et al. In silico analysis of kinase expression identifies WEE1 as a gatekeeper against mitotic catastrophe in glioblastoma. Cancer Cell 2010; 18: 244-257. 15. Magnussen GI, Hellesylt E, Nesland JM, Trope CG, Fl?renes VA, Holm R. High expression of wee1 is associated with malignancy in vulvar squamous cell carcinoma patients. BMC Cancer 2013; 13: 288-296. 16. Magnussen GI, Holm R, Emilsen E, Rosnes AKR, Slipicevic A, Fl?renes VA. High expression of Wee1 is associated with poor disease-free survival in malignant melanoma: potential for targeted therapy. PLoS One 2012; 7: 38254-38261. 17. Chen YK, Huang HC, Lin LM, Lin CC. Primary oral squamous cell carcinoma: an analysis of 703 cases in southern Taiwan. Oral Oncol 1999; 35: 173-179. 18. Oliver A, Helfrick J, Gard D. Primary oral squamous cell carcinoma: a review of 92 cases. J Oral Maxillofac Surg 1996; 54: 949-954. 19. Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2016. CA: Cancer J Clin 2016; 66: 7-30. 20. Barnes L, Eveson JW, Reichart P, Sidransky D. Pathology and genetics of head and neck tumours. WHO Classification of Tumours 2005; 9: 166-175. 21. Petti S. Lifestyle risk factors for oral cancer. Oral Oncol 2009; 45: 340-350. 22. Lin L, Chen Y, Lai D. Cancer promoting effect of Taiwan betel quid in hamster buccal pouch carcinogenesis. Oral Diseases 1997; 3: 232-237. 23. Rapidis AD, Gullane P, Langdon JD, Lefebvre JL, Scully C, Shah JP. Major advances in the knowledge and understanding of the epidemiology, aetiopathogenesis, diagnosis, management and prognosis of oral cancer. Oral Oncol 2009; 45: 299-300. 24. Mork J, Lie AK, Glattre E et al. Human papillomavirus infection as a risk factor for squamous-cell carcinoma of the head and neck. N Engl J Med 2001; 344: 1125-1131. 25. Lumerman H, Freedman P, Kerpel S. Oral epithelial dysplasia and the development of invasive squamous cell carcinoma. Oral Surg Oral Med Oral Pathol 1995; 79: 321-9. 26. Mashberg A, Morrissey J, Garfinkel L. A study of the appearance of early asymptomatic oral squamous cell carcinoma. Cancer 1973; 32: 1436-1145. 27. Al-Rawi NH, Talabani NG. Squamous cell carcinoma of the oral cavity: a case series analysis of clinical presentation and histological grading of 1,425 cases from Iraq. Clin Oral Invest 2008; 12: 15-18. 28. Bagan JV, Jimenez Y, Sanchis JM et al. Proliferative verrucous leukoplakia: high incidence of gingival squamous cell carcinoma. J Oral Pathol Med 2003; 32: 379-382. 29. Gorsky M, Epstein JB, Oakley C, Hay J, Stevenson-Moore P. Carcinoma of the tongue: A case series analysis of clinical presentation, risk factors, staging, and outcome. Oral Surg Oral Med Oral Pathol 2004; 98: 546-552. 30. Lim Y, Koo B, Lee J, Choi E. Level V lymph node dissection in oral and oropharyngeal carcinoma patients with clinically node-positive neck: is it absolutely necessary? Laryngoscope 2006; 116: 1232-1235. 31. Whitehurst JO, Droulias CA. Surgical treatment of squamous cell carcinoma of the oral tongue. Arch Otolaryngol 1977; 103: 212-215. 32. Ali EM, Abdelraheem AG. Concurrent radiotherapy and chemotherapy for locally advanced squamous cell carcinoma of the head and neck. Head Neck Oncol 2011; 3: 48-53. 33. Pignon J-P, Maître Al, Maillard E, Bourhis J. Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): An update on 93 randomised trials and 17,346 patients. Radiother Oncol 2009; 92: 4-14. 34. Bernier J, Domenge C, Ozsahin M et al. Postoperative irradiation with or without concomitant chemotherapy for locally advanced head and neck cancer. N Engl J Med 2004; 350: 1945-1952. 35. Bonner JA, Harari PM, Giralt J et al. Radiotherapy plus cetuximab for squamous cell carcinoma of the head and neck. N Engl J Med 2006; 354: 567-578. 36. Warnakulasuriya S. Global epidemiology of oral and oropharyngeal cancer. Oral Oncol 2009; 45: 309-316. 37. Shiboski C, Schmidt B, Jordan R. Racial disparity in stage at diagnosis and survival among adults with oral cancer in the US. Community Dent Oral Epidemiol 2007; 35: 233-240. 38. Feller L, Lemmer J. Oral squamous cell carcinoma: epidemiology, clinical presentation and treatment. J Cancer Ther 2012; 3: 263-268. 39. Lo WL, Kao SY, Chi LY, Wong YK, Chang RCS. Outcomes of oral squamous cell carcinoma in Taiwan after surgical therapy: factors affecting survival. J Oral Maxillofac Surg 2003; 61: 751-758. 40. Kortlever RM, Higgins PJ, Bernards R. Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence. Nat Cell Biol 2006; 8: 877-884. 41. Crighton D, Wilkinson S, O'prey J et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 2006; 14: 121-134. 42. Waldman T, Kinzler KW, Vogelstein B. p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res 1995; 55: 5187-5190. 43. Chipuk J, Kuwana T, Bouchier-Hayes L et al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 2004; 13: 1010-1014. 44. Bunz F, Dutriaux A, Lengauer C et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 1998; 282: 1497-1501. 45. Broude E, Swift M, Vivo C et al. p21Waf1/Cip1/Sdi1 mediates retinoblastoma protein degradation. Oncogene 2007; 26: 6954-58. 46. Obata A, Eura M, Sasaki J et al. Clinical significance of p53 functional loss in squamous cell carcinoma of the oropharynx. Int J Cancer 2000; 89: 187-193. 47. Hsieh L, Wang P, Chen I et al. Characteristics of mutations in the p53 gene in oral squamous cell carcinoma associated with betel quid chewing and cigarette smoking in Taiwanese. Carcinogenesis 2001; 9: 1497-1503. 48. Willis A, Jung EJ, Wakefield T, Chen X. Mutant p53 exerts a dominant negative effect by preventing wild-type p53 from binding to the promoter of its target genes. Oncogene 2004; 23: 2330-2338. 49. Hartwell LH, Weinert TA. Checkpoints: controls that ensure the order of cell cycle events. Science 1989; 246: 629-634. 50. Nurse P. Genetic control of cell size at cell division in yeast. Nature 1975; 256: 547-551. 51. Nurse P, Thuriaux P. Regulatory genes controlling mitosis in the fission yeast Schzzosaccharomyces Pombe. Genetics 1980; 96: 627-637. 52. Squire CJ, Dickson JM, Ivanovic I, Baker EN. Structure and inhibition of the human cell cycle checkpoint kinase, Wee1A kinase: an atypical tyrosine kinase with a key role in CDK1 regulation. Structure 2005; 13: 541-550. 53. Nakanishi M, Ando H, Watanabe N et al. Identification and characterization of human Wee1B, a new member of the Wee1 family of Cdk-inhibitory kinases. Genes to Cells 2000; 5: 839-847. 54. Watanabe N, Broome M, Hunter T. Regulation of the human WEE1Hu CDK tyrosine 15-kinase during the cell cycle. EMBO J 1995; 14 1878-1891. 55. Johnson LN, Noble MEM, Owen DJ. Active and inactive protein kinases: structural basis for regulation. Cell 1996; 85: 149-158. 56. Rothblum-Oviatt CJ, Ryan CE, Piwnica-Worms H. 14-3-3 binding regulates catalytic activity of human Wee1 kinase. Cell Growth Differ 2001; 12: 581-589. 57. Katayama K, Fujita N, Tsuruo T. Akt/Protein kinase B-dependent phosphorylation and inactivation of WEE1Hu promote cell cycle progression at G2/M transition. Mol Cell Biol 2005; 25: 5725-5737. 58. Kim SY, Song EJ, Lee K-J, James E. Ferrell J. Multisite M-phase phosphorylation of xenopus Wee1A. Mol Cell Biol 205; 25: 10580-10590. 59. Owens L, Simansk S, Sato T, Squire C, Ayad NG. Activation domain-dependent degradation of somatic Wee1 kinase. J Biol Chem 2010; 285: 6761-6769. 60. Watanabe N, Arai H, Nishihara Y et al. M-phase kinases induce phospho-dependent ubiquitination of somatic Wee1 by SCFbeta-TrCP. Proc Natl Acad Sci USA 2004; 101: 4419-4424. 61. Kim SY, Ferrell JE. Substrate competition as a source of ultrasensitivity in the inactivation of Wee1. Cell 2007; 128: 1133-1145. 62. Baldin V, Ducommun B. Subcellular localisation of human wee1 kinase is regulated during the cell cycle. J Cell Sci 1995; 108: 2425-2432. 63. Li C, Andrake M, Dunbrack R, Enders GH. A bifunctional regulatory element in human somatic WEE1 mediates Cyclin A/Cdk2 binding and Crm1-dependent nuclear export. Mol Cell Biol 2010; 30: 116-1130. 64. Mahajan K, Mahajan NP. WEE1 tyrosine kinase, a novel epigenetic modifier. Trends Genet 2013; 29: 394-402. 65. Carrassaa L, Chilàa R, Lupib M et al. Combined inhibition of Chk1 and Wee1. In vitro synergistic effect translates to tumor growth inhibition in vivo. Cell Cycle 2012; 11: 2507-2517. 66. Chen X, Zhang F-H, Chen Q-E et al. The clinical significance of CDK1 expression in oral squamous cell carcinoma. Med Oral Patol Oral Cir Bucal 2015; 20: 7-12. 67. Chang JT, Wang H-M, Chang K-W et al. Identification of differentially expressed genes in oral squamous cell carcinoma (OSCC): overexpression of NPM, CDK1 and NDRG1 and underexpression of CHES1. Int J Cancer 2005; 114: 942-949. 68. Chow J, Poon R. The CDK1 inhibitory kinase MYT1 in DNA damage checkpoint recovery. Oncogene 2013; 32: 4778-4788. 69. Xiao Z, Chen Z, Gunasekera AH et al. Chk1 mediates S and G2 arrests through Cdc25A degradation in response to DNA-damaging agents. J Biol Chem 2003; 278: 21767-21773. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19356 | - |
dc.description.abstract | 口腔癌占台灣十大癌症死因中第五位,特別在男性中為第四位,而當中超過九成的口腔癌為口腔鱗狀細胞癌。全球近年來研究發現口腔鱗狀細胞癌中,腫瘤抑制基因的突變機率高於致癌基因的活化性突變機率。已知TP53為口腔鱗狀細胞癌中最常突變之基因並且其亦為有力的G1細胞週期檢查點,因此當TP53產生突變而喪失正常功能時,細胞會代償性地更加依賴G2檢查點。WEE1蛋白即為一種G2檢查點調節蛋白,他可以磷酸化周期蛋白依賴性激酶1(CDK1) 酪氨酸15的位置 (tyrosine 15),從而抑制其活性,使得細胞週期停止,無法繼續進入有絲分裂。本實驗之目的為釐清台灣口腔鱗狀細胞癌中WEE1蛋白之表現狀況及其與各癌症臨床病理表現之關聯,同時也比較與其受質磷酸化周期蛋白依賴性激酶1之間的相關性。選用從2006年至2010年共75例頭頸部鱗狀細胞癌中腫瘤及周圍非腫瘤的部分,並且使用WEE1及磷酸化周期蛋白依賴性激酶1免疫組織化學染色法,分析二者的表現,發現WEE1於腫瘤細胞中有減少的趨勢,而且與其受質磷酸化周期蛋白依賴性激酶1在分布的位置上大致吻合。經由統計結果分析發現,WEE1及磷酸化周期蛋白依賴性激酶1兩者間呈現中度正相關性,進一步比較與各個癌症臨床病理表現間的相關性發現,WEE1與腫瘤的復發呈現負相關而磷酸化周期蛋白依賴性激酶1則與腫瘤的大小以及臨床分期呈現負相關。在五年存活率的分析上,二者均無顯著的相關性存在,這顯示磷酸化周期蛋白依賴性激酶1的降低可能會造成腫瘤的進展,而失去WEE1的表現則有可能會促成癌症復發。合併這二者在口腔鱗狀細胞癌中的表現,未來有可能可以進一步發展成為臨床預後的指標。 | zh_TW |
dc.description.abstract | An immunohistochemical study was conducted to investigate the expression of WEE1 and phosphorylated cyclin-dependent kinase 1 (CDK1) in oral squamous cell carcinomas (OSCC) in Taiwan. Seventy-five cases of OSCC were enrolled (67 males and 8 females). Age ranged from 23 to 82 years and the location of OSCC included tongue (n=27, 36%), buccal mucosa (n=23, 31%), gingiva (n=17, 23%), palate (n= 4, 5%), lip (n=2, 3%), floor of mouth (n=1, 1%) and alveolar mucosa (n=1, 1%). Normal-appearing tissue from adjacent, non-tumor area was harvested as the control group. We concluded that: (1) the mean labeling index of WEE1 in OSCC neoplastic cells was 22.5% and the median was 21 %. High expression of WEE1 (higher than 21% WEE1-positive cells) was observed in 38 out of 75 patients (50.67%) and low expression of WEE1 was observed in 37 out of 75 patients (49.33%). The mean and median labeling indices of WEE1 in normal epithelia were 37.97% and 35.5% respectively. (2) The mean labeling index of nuclear phosphorylated CDK1 was 11.1% and the median was 10%. High nuclear phosphorylated CDK1 was observed in 39 out of 75 patients (52%). (3) Statistically, the relation between WEE1 and phosphorylated CDK1 was a moderately positive correlation and also the immunostaining of phosphorylated CDK1 was also colocalized with that of WEE1 staining. In respect of clinical-pathological correlation, the WEE1 expression was significantly associated with the recurrence rate inversely. Decreased phosphorylated CDK1 expression was significantly associated with advanced T stage and clinical staging. In survival analysis, both WEE1 and phosphorylated CDK1 carried no significance to survival. To summarize, decreased phosphorylation of CDK1 may promote tumor progression and absence of WEE1 expression was associated with poor prognosis in OSCC. Therefore, combined WEE1 and phosphorylated CDK1 expression in OSCC could be a significant prognostic indicator. In the future, it merits further investigation of the potential molecular mechanism of WEE1 in OSCC. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T01:55:10Z (GMT). No. of bitstreams: 1 ntu-105-R01422011-1.pdf: 2405473 bytes, checksum: d642b0863dd3cb946c8077356f36eadc (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 中文摘要 3
Abstract 5 Introduction 7 Purpose of this study 9 Literature Review Part 1. Introduction of oral squamous cell carcinoma (OSCC) 10 (i) Epidemiology (ii) Etiology (iii) Clinical features (iv) Tumor spread (v) Tumor staging (vi) Treatment modalities (vii) Prognosis (viii) OSCC in Taiwan Part 2. Pathogenesis of oral squamous cell carcinoma (OSCC) 18 (i) Genetic events of OSCC (ii) TP53 (p53) (iii) TP53 and the dysregulation of cell cycle in OSCC Part 3. WEE1 kinase 22 (i) Introduction of WEE1 kinase (ii) Regulation of WEE1 kinase (iii) Subcellular location of WEE1 (iv) Functions of WEE1 kinase (v) WEE1 in cancer Part 4. Cyclin-dependent kinase1 (CDK1) and its expression in OSCC 31 Materials and methods Part 1. Patients and specimens 33 (i) Experimental group (ii) Control group (iii) Primary antibodies Part 2. Immunohistochemical staining of WEE1 and phosphorylated CDK1 34 Part 3. Assessment 35 (i) Cell counting (ii) Tumor staging, differentiation pattern and 5-year survival data Part 4. Statistical analysis 36 Results Part 1. Immunohistochemical staining of positive controls 38 (i) Staining pattern of WEE1 (ii) Staining pattern of phosphorylated CDK1 Part 2. Immunohistochemical staining of WEE1 and phosphorylated CDK1 39 (i) WEE1 in OSCC samples (ii) WEE1 in normal epithelia (iii) CDK1 in OSCC samples Part 3. Correlation between WEE1 and phosphorylated CDK1 43 Part 4. WEE1 and phosphorylated CDK1 expression correlating with clinical parameters 44 (i) The correlation between WEE1 and clinical parameters (ii) The correlation between phosphorylated CDK1 and clinical parameters (iii) The relation between WEE1/phosphorylated CDK1 and T stages, N stage and recurrence Discussion 47 Conclusion 55 References 59 Tables 65 Figures 70 | |
dc.language.iso | en | |
dc.title | WEE1蛋白於台灣口腔鱗狀細胞癌之表現狀態與臨床病理指標之分析 | zh_TW |
dc.title | Expression of WEE1 Protein and Its Clinicopathological Correlations in Oral Squamous Cell Carcinoma in Taiwan | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 江俊斌(Chun-Pin Chiang),張玉芳(Julia Yu Fong Chang),張龍昌(Long-Chang Chang) | |
dc.subject.keyword | WEE1,磷酸化周期蛋白依賴性激?1,口腔鱗狀細胞癌,細胞週期檢查點,免疫組織化學染色法, | zh_TW |
dc.subject.keyword | WEE1,CDK1,oral squamous cell carcinoma,cell cycle checkpoint,immunohistochemistry staining, | en |
dc.relation.page | 72 | |
dc.identifier.doi | 10.6342/NTU201600834 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2016-07-12 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
顯示於系所單位: | 臨床牙醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 2.35 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。