請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19343
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳亮嘉(Liang-Chia Chen) | |
dc.contributor.author | Liang-Hsueh Chiu | en |
dc.contributor.author | 邱亮學 | zh_TW |
dc.date.accessioned | 2021-06-08T01:54:37Z | - |
dc.date.copyright | 2020-09-17 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-18 | |
dc.identifier.citation | [1] Malacara, Optical shop testing, John Wiley Sons, 2007. [2] Hariharan P, Oreb B and Eiju T , 'Digital phase-shifting interferometry: a simple error–compensating phase calculation algorithm,' Appl Opt, pp. 2504-2506, 1987. [3] Yang Liu, 'Accuracy improvement of 3D measurement using digital fringe projection,' University of Wollongong, 2011. [4] Song Zhang and Shing-Tung Yau, 'Generic nonsinusoidal phase error correction for three-dimensional shape measurement using a digital video projector,' Appl Opt, pp. 36-43, 2007. [5] S. Ma, C. Quan, R. Zhu and C.J. Tay, 'Investigation of phase error correction for digital sinusoidal phase-shifting fringe projection profilometry,' Opt. Eng. , vol. 50, pp. 1107-1118, 2012. [6] Chunwei Zhang, Hong Zhao, Lu Zhang and Xin Wang, 'Full-field phase error detection and compensation method for digital phase-shifting fringe projection profilometry,' Meas. Sci. Technol., vol. 26, 2015. [7] Pan B, Qian K M, Huang L and Asundi A, 'Phase error analysis and compensation for nonsinusoidal waveforms in phase-shifting digital fringe projection profilometry,' Opt. Lett., vol. 34, pp. 416-8, 2009. [8] Jun-Zheng Peng, Hang-Kong Ouyang, Quan Yu , Ying-Jie Yu and Ke-Sheng Wang, 'Phase error correction for fringe projection profilometry by using constrained cubic spline,' Adv. Manuf., pp. 39-47, 2014. [9] Chao Chen, Nan Gao, Xiangjun Wang, Zonghua Zhang, Feng Gao and Xiangqian Jiang, 'Generic exponential fringe model for alleviating phase error in phase measuring profilometry,' Opt. Lasers Eng., vol. 110, pp. 179-185, 2018. [10] van Wingerden J, Frankena HJ and Smorenburg C, 'Linear approximation for measurement errors in phase shifting interferometry,' Appl Opt , p. 2718–29, 1991. [11] Stetson KA and Brohinsky WR, 'Electrooptic holography and its application to hologram interferometry,' Appl Opt , p. 3631–7, 1985. [12] Zuo C, Chen Q, Feng S, Feng F, Gu G and Sui X , 'Optimized pulse width modulation pattern strategy for three-dimensional profilometry with projector defocusing,' Appl Opt, pp. 4477-90, 2012. [13] R. M. Goldstein, H. A. Zebker and C. L. Werner, 'Satellite radar interferometry : two-dimensional phase unwrapping,' vol. 23, p. 713~p.720, 1988. [14] D. C. Ghiglia and L. A. Romero, 'Minimum lp-norm two-dimensional phase unwrapping,' J. Opt. Soc. Am. A 13, 1999–2013 (1996). [15] G. Sansoni, M. Carocci and R. Rodella, 'Three-dimensional vision based on a combination of gray-code and phase-shift light projection: analysis and compensation of the systematic errors,' Appl. Opt., Vols. 38, No. 31, pp. 6565-6573, 1999. [16] Zheng D, Da F, Kemao Q and Seah HS, 'Phase-shifting profilometry combined with gray code patterns projection: unwrapping error removal by an adaptive median filter,' Opt Express , p. 4700–13, 2017. [17] Zuo C., Huang L, Zhang M, Chen Q and A. Asundi, 'Temporal phase unwrapping algorithms for fringe projection profilometry: a comparative review,' Opt Lasers Eng, pp. 84-103, 2016. [18] C. Zuo, Q. Chen, G. Gu, S. Feng, F. Feng and R. Li, 'High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection,' Optics and Lasers in Engineering, p. 953 – 960, 2013. [19] C. E. Towers, D. P. Towers and J. D. C. Jones, 'Optimum frequency selection in multifrequency interferometry,' Opt. Lett. 28, p. 887–889, 2002. [20] C. Reich, R. Ritter and J. Thesing, '3-d shape measurement of complex objects by combining photogrammetry and fringe projection,' Opt. Eng. 39, p. 224–231, 2000. [21] Baker MJ, Xi J and Chicharo JF, 'Elimination of non-linear luminance effects for digital video projection phase measuring profilometers,' 4th IEEE international symposium on electronic design, test and applications, p. 496–501, 2008. [22] Thomas G. Beckwith, Roy D. Marangoni and John H. Lienhard V, 'Mechanical Measurements,' Pearson, 2006, pp. 36 - 84. [23] W.-S. Zhou and X.-Y. Su, 'A Direct Mapping Algorithm for Phase-measuring Profilometry,' Journal of Modern Optics, pp. 89-94, 1994. [24] Wansong Li, Xianyu Su and Zhongbao Liu, 'Large-scale three-dimensional object measurement A practical coordinate mapping,' APPLIED OPTICS, pp. 3326-3333, 2001. [25] Paulo J., Tavares a and Ma´rio A. Vaz , 'Linear calibration procedure for the phase-to-height relationship in phase measurement profilometry,' Optics Communications, pp. 307-314, 2007. [26] P.R. Jia, J. Kofman and C. English, 'Comparison of linear and nonlinear calibration methods for phase-measuring profilometry,' Opt Eng, p. 043601, 2007. [27] Li J, Hassebrook LG and Guan C, 'Optimized two-frequency phase-measuring-profilometry light-sensor temporal-noise sensitivity,' J Opt Soc Am A, 2003. [28] Chao Zuo, Shijie Feng, Lei Huang, Tianyang Tao, Wei Yin and Qian Chen, 'Phase shifting algorithms for fringe projection profilometry: A review,' Optics and Lasers in Engineering, 2018. [29] C. E. Towers, D. P. Towers and J. D. C, 'Optimum frequency selection in multi-frequency interferometry,' Opt. Lett., vol. 28, p. 887–889, 2003. [30] Duc-Hieu Duong, Liang-Chia Chen and Chin-Sheng Chen, 'Absolute depth measurement using multi-phase normalized cross-correlation for precise optical profilometry,' Sensors, 2019. [31] Huang PS, Zhang C and Chiang FP , 'High-speed 3D shape measurement based on digital fringe projection,' Opt Eng, p. 163–9 , 2003. [32] Xianling Zhao, Jiansheng Liu, Xiaohua Zheng, Yingchun Wu and Hong Shangguan, 'Phase error compensation and accuracy analysis for phase measurement profilometry,' Opt. Eng., Vols. 57(5), ID 054105, 2018. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19343 | - |
dc.description.abstract | 多頻率相移法絕對形貌量測術是將結構光影像投影至待測物表面後擷取其相位資訊,再透過相位與高度之間的轉換關係,推得物體的三維形貌輪廓。但此法在低訊噪比的量測環境可能得出錯誤的相位資訊,導致無法正確地重建待測物表面形貌,使量測不確定度增加。因此須分析並克服結構光相移量測法量測不確定度的關鍵誤差來源,使結構光相移量測法擁有高量測精度、低量測不確定度。 本研究旨在多頻率相移法絕對形貌量測術量測不確定度的分析與優化。針對系統量測不確定度進行分析,探討如何在光機設計時透過系統參數的設定降低高度對於相位的靈敏度(phase-height sensitivity)與相位不確定度,進而降低多頻率相移法絕對形貌量測術之高度量測不確定度。並提出系統量測不確定度優化的方法與流程,包含光機各項系統參數的設定,以及如何同時考量相機與投影機的解析度、量測範圍與相位不確定度,選出系統的最適條紋組合,搭配相機校正修正鏡頭畸變所導致的相位誤差以及相位與高度的非線性校正的最小平方法擬合,降低量測不確定度。 最後針對分析結果與優化方法進行實驗驗證,量化每個系統參數對量測不確定度的影響,包含光強振幅對封裝相位不確定度的影響、條紋大小對封裝相位不確定度的影響、條紋大小對高度對於相位靈敏度的影響以及條紋大小對條紋數不確定度的影響。透過本研究的量測不確定度分析與優化,優化後的量測不確定度降低了80.8%,選擇適當的條紋組合、系統參數與系統校正方法,可以使結構光相移量測法優化,擁有較佳的量測精度。 | zh_TW |
dc.description.abstract | Digital fringe projection profilometry (DFPP) is a 3-D measurement technique to get 3-D information of the objects by projecting the fringes onto the objects, calculating the phase values and doing the phase to height conversion. This technique remains several challenges such as high measurement uncertainty in low signal-to-noise ratio (SNR) regions. In order to make the measurement results have high precision and low measurement uncertainty, it is necessary to figure out and resolve the critical source of the measurement uncertainty. Therefore, this study aims to analyze the relationship between the system parameters and measurement uncertainty, and propose a method to minimize the phase-height sensitivity and phase uncertainty. Finally, optimize the measurement uncertainty of DFPP. This study quantifies the influence of system parameters on measurement uncertainty, including the influence of the intensity and the fringe pitch on phase uncertainty and the influence of the fringe pitch on phase-height sensitivity and fringe order uncertainty. Ultimately, the measurement uncertainty decreased by 80.8% after optimization. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T01:54:37Z (GMT). No. of bitstreams: 1 U0001-1708202011503600.pdf: 5092677 bytes, checksum: 5910a7e50e9ab09d2238f527aca53fe4 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 誌謝 ii 中文摘要 iii Abstract iv 目錄 v 圖目錄 ix 表目錄 xiii 符號目錄 xv Chapter 1 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 1.3 論文架構 4 Chapter 2 文獻回顧 5 2.1 引言 5 2.2 條紋結構光量測法之原理 6 2.3 相移法與封裝相位不確定度文獻比較 8 2.3.1 相移誤差 8 2.3.2 投光與取像系統非線性相位誤差 10 2.3.3 相移法不確定度比較 20 2.4 相位還原不確定度文獻與比較 21 2.4.1 相位還原方法 21 2.4.2 失焦對於相位還原不確定度的影響 28 2.4.3 相位還原不確定度比較 32 2.5 量測不確定度之數學模型 33 2.5.1 量測不確定度 33 2.5.2 量測不確定度傳播之數學模型 36 2.6 文獻分析與總結 38 Chapter 3 系統量測不確定度分析 39 3.1 引言 39 3.2 結構光相移法之高度量測不確定度分析 40 3.3 高度對於相位之靈敏度分析 43 3.4 相位與高度非線性轉換之靈敏度計算 47 3.5 封裝相位不確定度分析 51 3.6 多頻率條紋投影相位還原法不確定度分析 55 3.7 系統量測不確定度分析總結 57 Chapter 4 系統量測不確定度優化 59 4.1 引言 59 4.2 系統參數選定 60 4.3 多頻率條紋投影相移法最適條紋選擇 63 4.4 系統校正 69 4.4.1 相機的成像模型與校正 69 4.4.2 相位與高度的非線性校正量測不確定度優化 73 4.5 系統量測不確定度優化總結 75 Chapter 5 實驗與結果分析 77 5.1 實驗架構 77 5.2 系統硬體規格 78 5.2.1 投影機規格 78 5.2.2 影像擷取規格 80 5.2.3 單軸位移平台規格 81 5.3 光強振幅對封裝相位不確定度的影響 82 5.3.1 實驗目的與原理 82 5.3.2 實驗步驟 82 5.3.3 實驗結果與分析 83 5.4 條紋大小對封裝相位不確定度的影響 88 5.4.1 實驗目的與原理 88 5.4.2 實驗步驟 88 5.4.3 實驗結果與分析 89 5.5 條紋大小對高度對於相位靈敏度的影響 91 5.5.1 實驗目的與原理 91 5.5.2 實驗步驟 92 5.5.3 實驗結果與分析 92 5.6 條紋大小對條紋數(fringe order)不確定度的影響 98 5.6.1 實驗目的與原理 98 5.6.2 實驗步驟 98 5.6.3 實驗結果與分析 98 5.7 量測方法優化之實驗與結果分析 100 Chapter 6 結論與未來展望 103 6.1 結論 103 6.2 未來展望 104 References 105 | |
dc.language.iso | zh-TW | |
dc.title | 多頻率相移法絕對形貌量測術之不確定度分析與優化研究 | zh_TW |
dc.title | Research on Measurement Uncertainty Analysis and Optimization on Digital Fringe Projection for Absolute Surface Profilometry | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 劉正良(Cheng-Liang Liu),葉勝利(SHENG-LI YEH),林世聰(Shyh-Tsong Lin),何昭慶(Chao-Ching Ho) | |
dc.subject.keyword | 三維形貌量測,多頻率相移法絕對形貌量測術,量測不確定度,多頻率相位還原法, | zh_TW |
dc.subject.keyword | 3-D measurement,Digital fringe projection profilometry,Measurement uncertainty,Multi-frequency phase unwrapping, | en |
dc.relation.page | 108 | |
dc.identifier.doi | 10.6342/NTU202003708 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2020-08-19 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1708202011503600.pdf 目前未授權公開取用 | 4.97 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。