請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19336完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王錦堂(Jin-Town Wang) | |
| dc.contributor.author | Yi-Yin Chen | en |
| dc.contributor.author | 陳依吟 | zh_TW |
| dc.date.accessioned | 2021-06-08T01:54:18Z | - |
| dc.date.copyright | 2016-08-26 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-07-15 | |
| dc.identifier.citation | 1. Yew, W.W. and C.C. Leung, Update in tuberculosis 2008. Am J Respir Crit Care Med, (2009). 179:337.
2. Walburger, A., et al., Protein kinase G from pathogenic mycobacteria promotes survival within macrophages. Science, (2004). 304:1800. 3. Russell, D.G., Mycobacterium tuberculosis: here today, and here tomorrow. Nat Rev Mol Cell Biol, (2001). 2:569. 4. Hett, E.C. and E.J. Rubin, Bacterial growth and cell division: a mycobacterial perspective. Microbiol Mol Biol Rev, (2008). 72:126. 5. JD, A., Spontaneous tuberculosis in salt water fish. The Journal of Infectious Diseases, (1926). 39:315. 6. Wolinsky, E., Mycobacterial diseases other than tuberculosis. Clin Infect Dis, (1992). 15:1. 7. Stinear, T.P., et al., Insights from the complete genome sequence of Mycobacterium marinum on the evolution of Mycobacterium tuberculosis. Genome Res, (2008). 18:729. 8. Mehta, P.K., et al., Entry and intracellular replication of Mycobacterium tuberculosis in cultured human microvascular endothelial cells. Microb Pathog, (2006). 41:119. 9. Tobin, D.M. and L. Ramakrishnan, Comparative pathogenesis of Mycobacterium marinum and Mycobacterium tuberculosis. Cell Microbiol, (2008). 10:1027. 10. Bozzaro, S., The model organism Dictyostelium discoideum. Methods Mol Biol, (2013). 983:17. 11. Rahme, L.G., et al., Use of model plant hosts to identify Pseudomonas aeruginosa virulence factors. Proc Natl Acad Sci U S A, (1997). 94:13245. 12. Tan, M.W., S. Mahajan-Miklos, and F.M. Ausubel, Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc Natl Acad Sci U S A, (1999). 96:715. 13. D'Argenio, D.A., et al., Drosophila as a model host for Pseudomonas aeruginosa infection. J Bacteriol, (2001). 183:1466. 14. Fauvarque, M.O., et al., Role and activation of type III secretion system genes in Pseudomonas aeruginosa-induced Drosophila killing. Microb Pathog, (2002). 32:287. 15. Baker, W.M., Remarks on a Method of Fixing the Bones in the Operation of Excision of the Knee-Joint. Br Med J, (1887). 1:321. 16. Eichinger, L., et al., The genome of the social amoeba Dictyostelium discoideum. Nature, (2005). 435:43. 17. de Hostos, E.L., et al., Coronin, an actin binding protein of Dictyostelium discoideum localized to cell surface projections, has sequence similarities to G protein beta subunits. EMBO J, (1991). 10:4097. 18. Maniak, M., et al., Coronin involved in phagocytosis: dynamics of particle-induced relocalization visualized by a green fluorescent protein Tag. Cell, (1995). 83:915. 19. Cosson, P., et al., Pseudomonas aeruginosa virulence analyzed in a Dictyostelium discoideum host system. J Bacteriol, (2002). 184:3027. 20. Pukatzki, S., R.H. Kessin, and J.J. Mekalanos, The human pathogen Pseudomonas aeruginosa utilizes conserved virulence pathways to infect the social amoeba Dictyostelium discoideum. Proc Natl Acad Sci U S A, (2002). 99:3159. 21. Alibaud, L., et al., Pseudomonas aeruginosa virulence genes identified in a Dictyostelium host model. Cell Microbiol, (2008). 10:729. 22. Pukatzki, S., et al., Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci U S A, (2006). 103:1528. 23. Pukatzki, S., et al., Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci U S A, (2007). 104:15508. 24. Pan, Y.J., et al., Use of a Dictyostelium model for isolation of genetic loci associated with phagocytosis and virulence in Klebsiella pneumoniae. Infect Immun, (2011). 79:997. 25. Vlahou, G., et al., Yersinia outer protein YopE affects the actin cytoskeleton in Dictyostelium discoideum through targeting of multiple Rho family GTPases. BMC Microbiol, (2009). 9:138. 26. Solomon, J.M., et al., Intracellular growth of Legionella pneumophila in Dictyostelium discoideum, a system for genetic analysis of host-pathogen interactions. Infect Immun, (2000). 68:2939. 27. Li, Z., et al., The amoebal MAP kinase response to Legionella pneumophila is regulated by DupA. Cell Host Microbe, (2009). 6:253. 28. Hagedorn, M., et al., Infection by tubercular mycobacteria is spread by nonlytic ejection from their amoeba hosts. Science, (2009). 323:1729. 29. Alibaud, L., et al., A Mycobacterium marinum TesA mutant defective for major cell wall-associated lipids is highly attenuated in Dictyostelium discoideum and zebrafish embryos. Mol Microbiol, (2011). 80:919. 30. Daffe, M. and P. Draper, The envelope layers of mycobacteria with reference to their pathogenicity. Adv Microb Physiol, (1998). 39:131. 31. Jarlier, V. and H. Nikaido, Permeability barrier to hydrophilic solutes in Mycobacterium chelonei. J Bacteriol, (1990). 172:1418. 32. Karakousis, P.C., W.R. Bishai, and S.E. Dorman, Mycobacterium tuberculosis cell envelope lipids and the host immune response. Cell Microbiol, (2004). 6:105. 33. Neyrolles, O. and C. Guilhot, Recent advances in deciphering the contribution of Mycobacterium tuberculosis lipids to pathogenesis. Tuberculosis (Edinb), (2011). 91:187. 34. Burguiere, A., et al., LosA, a key glycosyltransferase involved in the biosynthesis of a novel family of glycosylated acyltrehalose lipooligosaccharides from Mycobacterium marinum. J Biol Chem, (2005). 280:42124. 35. Daffe, M., Further stereochemical studies of phthiocerol and phenol phthiocerol in mycobacteria. Res Microbiol, (1991). 142:405. 36. Hunter, S.W., et al., N-acylkansosamine. A novel N-acylamino sugar from the trehalose-containing lipooligosaccharide antigens of Mycobacterium kansasii. J Biol Chem, (1984). 259:9729. 37. Hunter, S.W., et al., Trehalose-containing lipooligosaccharides. A new class of species-specific antigens from Mycobacterium. J Biol Chem, (1983). 258:10481. 38. McNeil, M., et al., Mycobacterial glycolipids: isolation, structures, antigenicity, and synthesis of neoantigens. Methods Enzymol, (1989). 179:215. 39. Ren, H., et al., Identification of the lipooligosaccharide biosynthetic gene cluster from Mycobacterium marinum. Mol Microbiol, (2007). 63:1345. 40. Brodin, P., et al., High content phenotypic cell-based visual screen identifies Mycobacterium tuberculosis acyltrehalose-containing glycolipids involved in phagosome remodeling. PLoS Pathog, (2010). 6:e1001100. 41. Sarkar, D., et al., Identification of a glycosyltransferase from Mycobacterium marinum involved in addition of a caryophyllose moiety in lipooligosaccharides. J Bacteriol, (2011). 193:2336. 42. van der Woude, A.D., et al., Unexpected link between lipooligosaccharide biosynthesis and surface protein release in Mycobacterium marinum. J Biol Chem, (2012). 287:20417. 43. Alibaud, L., et al., Increased phagocytosis of Mycobacterium marinum mutants defective in lipooligosaccharide production: a structure-activity relationship study. J Biol Chem, (2014). 289:215. 44. Rombouts, Y., et al., Mycobacterium marinum lipooligosaccharides are unique caryophyllose-containing cell wall glycolipids that inhibit tumor necrosis factor-alpha secretion in macrophages. J Biol Chem, (2009). 284:20975. 45. Greub, G. and D. Raoult, Microorganisms Resistant to Free-Living Amoebae. Clinical Microbiology Reviews, (2004). 17:413. 46. Bardarov, S., et al., Conditionally replicating mycobacteriophages: a system for transposon delivery to Mycobacterium tuberculosis. Proc Natl Acad Sci U S A, (1997). 94:10961. 47. Shin, S.J., et al., Identification of novel virulence determinants in Mycobacterium paratuberculosis by screening a library of insertional mutants. Infect Immun, (2006). 74:3825. 48. Choi, K.P., et al., Use of transposon Tn5367 mutagenesis and a nitroimidazopyran-based selection system to demonstrate a requirement for fbiA and fbiB in coenzyme F(420) biosynthesis by Mycobacterium bovis BCG. J Bacteriol, (2001). 183:7058. 49. Chun, K.T., et al., Rapid amplification of uncharacterized transposon-tagged DNA sequences from genomic DNA. Yeast, (1997). 13:233. 50. Parish, T. and N.G. Stoker, Use of a flexible cassette method to generate a double unmarked Mycobacterium tuberculosis tlyA plcABC mutant by gene replacement. Microbiology, (2000). 146 ( Pt 8):1969. 51. Higuchi, R., B. Krummel, and R.K. Saiki, A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res, (1988). 16:7351. 52. Arafah, S., et al., Setting up and monitoring an infection of Dictyostelium discoideum with mycobacteria. Methods Mol Biol, (2013). 983:403. 53. Alexander, D.C., et al., PimF, a mannosyltransferase of mycobacteria, is involved in the biosynthesis of phosphatidylinositol mannosides and lipoarabinomannan. J Biol Chem, (2004). 279:18824. 54. Domenech, P., M.B. Reed, and C.E. Barry, 3rd, Contribution of the Mycobacterium tuberculosis MmpL protein family to virulence and drug resistance. Infect Immun, (2005). 73:3492. 55. Gerdes, S.Y., et al., Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. J Bacteriol, (2003). 185:5673. 56. Liberati, N.T., et al., An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci U S A, (2006). 103:2833. 57. Salama, N.R., B. Shepherd, and S. Falkow, Global transposon mutagenesis and essential gene analysis of Helicobacter pylori. J Bacteriol, (2004). 186:7926. 58. Dong, D., et al., PPE38 modulates the innate immune response and is required for Mycobacterium marinum virulence. Infect Immun, (2012). 80:43. 59. McEvoy, C.R., et al., Evidence for a rapid rate of molecular evolution at the hypervariable and immunogenic Mycobacterium tuberculosis PPE38 gene region. BMC Evol Biol, (2009). 9:237. 60. Okkels, L.M., et al., PPE protein (Rv3873) from DNA segment RD1 of Mycobacterium tuberculosis: strong recognition of both specific T-cell epitopes and epitopes conserved within the PPE family. Infect Immun, (2003). 71:6116. 61. Wang, H., et al., PPE38 of Mycobacterium marinum triggers the cross-talk of multiple pathways involved in the host response, as revealed by subcellular quantitative proteomics. J Proteome Res, (2013). 12:2055. 62. Cosson, P. and W.C. Lima, Intracellular killing of bacteria: is Dictyostelium a model macrophage or an alien? Cell Microbiol, (2014). 16:816. 63. Journet, A., et al., Characterization of Dictyostelium discoideum cathepsin D. J Cell Sci, (1999). 112 ( Pt 21):3833. 64. Lardy, B., et al., NADPH oxidase homologs are required for normal cell differentiation and morphogenesis in Dictyostelium discoideum. Biochim Biophys Acta, (2005). 1744:199. 65. Greub, G. and D. Raoult, Microorganisms resistant to free-living amoebae. Clin Microbiol Rev, (2004). 17:413. 66. Steinhauer, K., et al., Rapid evaluation of the mycobactericidal efficacy of disinfectants in the quantitative carrier test EN 14563 by using fluorescent Mycobacterium terrae. Appl Environ Microbiol, (2010). 76:546. 67. Scholz, O., et al., Quantitative analysis of gene expression with an improved green fluorescent protein. p6. Eur J Biochem, (2000). 267:1565. 1. Katti, M.K., et al., The Delta fbpA mutant derived from Mycobacterium tuberculosis H37Rv has an enhanced susceptibility to intracellular antimicrobial oxidative mechanisms, undergoes limited phagosome maturation and activates macrophages and dendritic cells. Cell Microbiol, (2008). 10:1286. 2. Brodin, P., et al., High content phenotypic cell-based visual screen identifies Mycobacterium tuberculosis acyltrehalose-containing glycolipids involved in phagosome remodeling. PLoS Pathog, (2010). 6:e1001100. 3. Domenech, P., M.B. Reed, and C.E. Barry, 3rd, Contribution of the Mycobacterium tuberculosis MmpL protein family to virulence and drug resistance. Infect Immun, (2005). 73:3492. 4. Voskuil, M.I., et al., Regulation of the Mycobacterium tuberculosis PE/PPE genes. Tuberculosis (Edinb), (2004). 84:256. 5. Chaitra, M.G., M.S. Shaila, and R. Nayak, Characterization of T-cell immunogenicity of two PE/PPE proteins of Mycobacterium tuberculosis. J Med Microbiol, (2008). 57:1079. 6. Karboul, A., et al., Frequent homologous recombination events in Mycobacterium tuberculosis PE/PPE multigene families: potential role in antigenic variability. J Bacteriol, (2008). 190:7838. 7. Wang, J., et al., PPE protein (Rv3425) from DNA segment RD11 of Mycobacterium tuberculosis: a novel immunodominant antigen of Mycobacterium tuberculosis induces humoral and cellular immune responses in mice. Microbiol Immunol, (2008). 52:224. 8. van der Woude, A.D., et al., Unexpected link between lipooligosaccharide biosynthesis and surface protein release in Mycobacterium marinum. J Biol Chem, (2012). 287:20417. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19336 | - |
| dc.description.abstract | 抵抗吞噬細胞的吞噬作用為結核桿菌屬的細菌最主要的致病機制,故本研究利用海洋分支桿菌 (M. marinum) 作為研究材料。海洋分支桿菌是結核分支桿菌的近親,其基因體定序已被完成,在魚類造成的病症和人類結核病相類似,接著再以黏菌 (Dictyostelium discoideum) 作為宿主模式。黏菌和哺乳類巨噬細胞有許多相似的特徵,具有吞噬並殺死細菌的能力,可用來替代研究致病菌與巨噬細胞之間的交互作用,成為快速篩選的實驗平台。本研究利用跳躍子建立了1728株海洋分支桿菌突變株庫,並篩選出對黏菌具有毒力的基因。篩選後獲得30株突變株仍可使黏菌存活,此30株突變株共分別影響20個基因區段,其中有6個基因 (losA, mmar_2318, mmar_2319, wecE, mmar_2323 and mmar_2353) 位於脂寡聚醣 (lipooligosaccharide/LOS) 生合成區段中。脂寡聚醣為已知細胞壁上的醣脂抗原,在海洋分支桿菌中主要的脂寡聚醣結構為LOS-I到LOS-IV四種。
以二維色層薄層分析法 (2D-TLC) 分析醣脂抗原,結果發現mmar_2318 和 mmar_2319的基因剔除株皆為LOS-III累積量提高而LOS-IV生成缺失,其基因剔除株與基因補回株皆證實mmar_2318 和 mmar_2319會對黏菌造成毒力,但不顯著影響細菌進入黏菌的比例以及細菌在黏菌內複製的能力。進一步利用鼠類巨噬細胞株(J774a.1)及人類巨噬細胞株 (PMA-induced THP-1) 進行實驗,結果發現mmar_2318 和 mmar_2319的基因剔除株,其在細胞株內的複製能力皆不受影響,但細菌進入細胞的比例在THP-1中有顯著增加,而J774a.1則否。總結來說,雖然mmar_2319已有研究指出會參與LOS的生合成,但我們仍發現了新的基因,mmar_2318並且一樣參與LOS的生合成路徑,且mmar_2318 與mmar_2319的基因剔除株會降低對黏菌的毒力作用並細菌增加進入THP-1的細菌數。 | zh_TW |
| dc.description.abstract | Resistance to phagocyte killing is an important virulence factor in mycobacteria. Dictyostelium has been used to study the interaction between phagocytes and bacteria, given its similarity to the mammalian macrophage. Here, we investigated the genes responsible for virulence to Dictyostelium by screening 1728 transposon mutants of the Mycobacterium marinum NTUH-M6094 strain. A total of 30 mutants that were permissive for Dictyostelium growth were identified. These mutants revealed interruptions in 20 distinct loci. Of the 20 loci, six genes (losA, mmar_2318, mmar_2319, wecE, mmar_2323 and mmar_2353) were located in the lipooligosaccharide (LOS) synthesis cluster. LOS are antigenic glycolipids and the core LOS structure from LOS-I to LOS-IV have been reported to exist in M. marinum. Two-dimensional thin-layer chromatography (2D-TLC) glycolipid profiles revealed that deletion of mmar_2318 or mmar_2319 resulted in the accumulation of LOS-III and deficiency of LOS-IV. Deletion and complementation of mmar_2318 or mmar_2319 confirmed that both genes contributed to virulence towards Dictyostelium but not entry and replication inside Dictyostelium. Co-incubation with a murine macrophage cell line J774a.1 or PMA-induced human monocytic cell line THP-1 demonstrated that mmar_2318 or mmar_2319 deletion mutant could grow in macrophages, and their initial entry rate was not affected in J774a.1 but significantly increased in THP-1. In conclusion, although mmar_2319 has been reported to involve LOS biosynthesis in a previous study, we identified a new gene, mmar_2318 that is also involved in the biosynthesis of LOS. Deletion of mmar_2318 or mmar_2319 both exhibits reduction of virulence towards Dictyostelium and increased entry into THP-1 cells. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T01:54:18Z (GMT). No. of bitstreams: 1 ntu-105-D99445003-1.pdf: 2377459 bytes, checksum: c11575cfd0c2b7d25a52500461d2ce2c (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 目錄
口試委員會審定書 I 致謝 II 中文摘要 III ABSTRACT IV 第一章 緒論 1 結核病與結核桿菌 1 人類結核分支桿菌的致病機制 1 海洋分支桿菌 2 黏菌 2 黏菌模式應用於細菌研究 3 分支桿菌的細胞壁脂寡聚醣 4 第二章 研究目的 6 第三章 材料與方法 7 菌株培養方法、載體與引子序列 7 LB 培養液 7 7H9 培養液 7 7H11培養基 7 HL5培養液 8 建構海洋分支桿菌基因突變株庫 8 放大帶有跳躍子的噬菌體 8 測定噬菌體濃度 9 利用phAE94建構NTUH-M6094的基因突變株庫 9 篩選出海洋分支桿菌基因突變庫中對黏菌具有毒力的基因 9 黏菌吞噬斑突變株庫篩選實驗方法 10 突變株序列分析 11 第一次半隨機聚合酶連鎖反應條件 11 第二次半隨機聚合酶連鎖反應條件 12 基因剔除株的建構 13 載體的建構 13 分支桿菌勝任細胞的製備 14 載體的送入與基因剔除株建立 14 基因補回株的建立 15 海洋分支桿菌的脂質層萃取及分析 15 脂質層萃取 15 二維薄層色層分析 (two-dimensional thin layer chromatography / 2D-TLC) 16 以海洋分支桿菌感染黏菌 [52] 17 以海洋分支桿菌或人類結核桿菌感染巨噬細胞[39] 17 第四章 實驗結果 20 建構海洋分支桿菌的突變株庫 20 篩選突變株庫中可使黏菌存活的突變株 20 海洋分支桿菌脂寡聚醣的二維薄層色層分析 21 mmar_2318與mmar_2319基因剔除株與基因補回株的表型確認 22 生長能力的差異 22 吞噬斑的確認 22 菌落型態與菌落大小 23 mmar_2318與mmar_2319對黏菌的感染 23 第五章 討論與總結 26 突變株庫的代表性 26 利用黏菌模式篩選之結果 27 mmar_2318與mmar_2319對脂寡聚醣的生合成 28 mmar_2318與mmar_2319對黏菌的毒殺 29 mmar_2318與mmar_2319與巨噬細胞 29 mmar_2318與mmar_2319的基因相似度 30 巨噬細胞與黏菌差異 31 總結 32 第六章 參考文獻 33 第七章 延伸實驗 (Mycobacterium tuberculosis H37Rv) 40 實驗目的: 40 實驗結果: 40 人類結核桿菌基因剔除株對人類巨噬細胞的感染 40 人類結核桿菌基因剔除株對人類巨噬細胞的細胞毒力 41 人類結核桿菌基因剔除株脂質層的二維薄層色層分析 41 實驗討論: 42 參考文獻 43 表目錄 表一、 實驗中海洋分支桿菌所使用的載體與引子序列 45 表二、 實驗中人類結核桿菌所使用的引子序列 46 表三、17株隨機挑選的突變株經半隨機聚合酶連鎖反應後的定序結果 47 表四、跳躍子突變株庫中可使黏菌存活的突變株 48 圖目錄 圖一. 添加微量產氣克雷伯氏桿菌(Klebsiella aerogenes)可於海洋分枝桿菌的跳躍子突變株庫中篩選出失去對黏菌具有毒力(virulence)作用的突變株。 49 圖二、跳躍子嵌入海洋分支桿菌脂寡聚醣生合成基因區段中的詳細嵌入位置 50 圖三、海洋分支桿菌mmar_2318與mmar_2319基因剔除株以及基因補回株的基因排列與脂寡聚醣二維薄層色層分析 51 圖四、海洋分支桿菌losA、wecE與mmar_2353跳躍子突變株的脂寡聚醣二維薄層色層分析 52 圖五、海洋分支桿菌野生株、2318以及2319基因剔除株在33oC與20oC培養溫度下的生長曲線圖。 53 圖六、mmar_2318與mmar_2319基因剔除株與基因補回株的表型確認I-黏菌吞噬斑的形成 54 圖七、mmar_2318與mmar_2319基因剔除株與基因補回株的表型確認II-吞噬斑的定量分析 55 圖八、mmar_2318與mmar_2319基因剔除株與基因補回株的表型確認III-菌落型態與大小 56 圖九、mmar_2318與mmar_2319基因剔除株進入黏菌胞內數目與存活率 57 圖十、mmar_2318與mmar_2319基因剔除株進入巨噬細胞內數目與存活率 58 附錄 附錄一、 半隨機聚合酶連鎖反應(Semi-random PCR)的實驗原理。 60 附錄二、.利用重覆區段聚合酶連鎖反應(overlap PCR)建構無標記基因剔除載體(unmarked deletion vector)。 61 附錄三、pGOAL19 62 附錄四、人類結核桿菌基因剔除株進入巨噬細胞內數目與存活率 63 附錄五、人類結核桿菌基因剔除株對人類巨噬細胞的毒性 64 附錄六、人類分枝桿菌野生株,1502與1524突變株的細胞壁脂質層二維薄層色層分析 65 | |
| dc.language.iso | zh-TW | |
| dc.title | 海洋分支桿菌mmar_2318和mmar_2319基因負責生合成細胞壁脂寡聚醣與調控對黏菌的毒性 | zh_TW |
| dc.title | Mycobacterium marinum mmar_2318 and mmar_2319 are Responsible for Lipooligosaccharide Biosynthesis and Virulence towards Dictyostelium: screening in a transposon mutant library | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 賴信志(Hsin-Chih Lai),楊宏志(Hung-Chih Yang),蔡丰喬(Feng-Chiao Tsai),張永祺(Yung-Chiy Chang) | |
| dc.subject.keyword | 海洋分支桿菌,脂寡聚醣,致病力,巨噬細胞,黏菌, | zh_TW |
| dc.subject.keyword | M. marinum,lipooligosaccharide,virulence,macrophage,Dictyostelium, | en |
| dc.relation.page | 65 | |
| dc.identifier.doi | 10.6342/NTU201600926 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2016-07-15 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 微生物學研究所 | zh_TW |
| 顯示於系所單位: | 微生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 2.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
