Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19334
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇慧敏
dc.contributor.authorChin-Yi Linen
dc.contributor.author林晉儀zh_TW
dc.date.accessioned2021-06-08T01:54:12Z-
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-07-15
dc.identifier.citationAbemayor E, Sidell N (1989) Human neuroblastoma cell lines as models for the in vitro study of neoplastic and neuronal cell differentiation. Environ Health Perspect 80:3-15.
Agholme L, Lindstrom T, Kagedal K, Marcusson J, Hallbeck M (2010) An in vitro model for neuroscience: differentiation of SH-SY5Y cells into cells with morphological and biochemical characteristics of mature neurons. J Alzheimers Dis 20:1069-1082.
Audesirk T, Cabell L, Kern M, Audesirk G (2003) β-estradiol influences differentiation of hippocampal neurons in vitro through an estrogen receptor-mediated process. Neuroscience 121:927-934.
Balogun KA, Cheema SK (2014) The expression of neurotrophins is differentially regulated by omega-3 polyunsaturated fatty acids at weaning and postweaning in C57BL/6 mice cerebral cortex. Neurochem Int 66:33-42.
Banasr M, Hery M, Brezun J, Daszuta A (2001) Serotonin mediates oestrogen stimulation of cell proliferation in the adult dentate gyrus. Eur J Neurosci 14:1417-1424.
Bate C, Tayebi M, Salmona M, Diomede L, Williams A (2010) Polyunsaturated fatty acids protect against prion-mediated synapse damage in vitro. Neurotox Res 17:203-214.
Behl C (2002) Oestrogen as a neuroprotective hormone. Nat Rev Neurosci 3:433-442.
Beyer C (1999) Estrogen and the developing mammalian brain. Anat Embryol 1999:379-390.
Beyer C, Karolczak M (2000) Estrogenic stimulation of neurite growth in midbrain dopaminergic neurons depends on cAMP/protein kinase A signalling. J Neurosci Res 59:107-116.
Bosco AaL, R (1999) BDNF and NT‐4 differentially modulate neurite outgrowth in developing retinal ganglion cells. J Neurosci Res 57:759-769.
Bousquet M, Gibrat C, Saint-Pierre M, Julien C, Calon F, Cicchetti F (2009) Modulation of brain-derived neurotrophic factor as a potential neuroprotective mechanism of action of omega-3 fatty acids in a parkinsonian animal model. Prog Neuropsychopharmacol Biol Psychiatry 33:1401-1408.
Bowman R, Ferguson D, Luine V (2002) Effects of chronic restraint stress and estradiol on open field activity, spatial memory, and monoaminergic neurotransmitters in ovariectomized rats. Neuroscience 113:401-410,.
Brinton DB, Tran J, Proffitt P (1997) 17 β-estradiol enhances the outgrowth and survival of neocortical neurons in culture. Neurochem Res 22:1339-1351.
Bruinenberg VM, van Vliet D, Attali A, de Wilde MC, Kuhn M, van Spronsen FJ, van der Zee EA (2016) A specific nutrient combination attenuates the reduced expression of PSD-95 in the proximal dendrites of hippocampal cell body layers in a mouse model of phenylketonuria. Nutrients 8.
Calderon F, Kim HY (2007) Role of RXR in neurite outgrowth induced by docosahexaenoic acid. Prostaglandins Leukot Essent Fatty Acids 77:227-232.
Cansev M, Marzloff G, Sakamoto T, Ulus IH, Wurtman RJ (2009) Giving uridine and/or docosahexaenoic acid orally to rat dams during gestation and nursing increases synaptic elements in brains of weanling pups. Dev Neurosci 31:181-192.
Cao D, Kevala K, Kim J, Moon HS, Jun SB, Lovinger D, Kim HY (2009) Docosahexaenoic acid promotes hippocampal neuronal development and synaptic function. J Neurochem 111:510-521.
Cao D, Xue R, Xu J, Liu Z (2005) Effects of docosahexaenoic acid on the survival and neurite outgrowth of rat cortical neurons in primary cultures. J Nutr Biochem 16:538-546.
Chamniansawat S, Chongthammakun S (2009) Estrogen stimulates activity-regulated cytoskeleton associated protein (Arc) expression via the MAPK- and PI-3K-dependent pathways in SH-SY5Y cells. Neurosci Lett 452:130-135.
Chamniansawat S, Chongthammakun S (2012) A priming role of local estrogen on exogenous estrogen-mediated synaptic plasticity and neuroprotection. Exp Mol Med 44:403-411.
Charych EI, Akum BF, Goldberg JS, Jornsten RJ, Rongo C, Zheng JQ, Firestein BL (2006) Activity-independent regulation of dendrite patterning by postsynaptic density protein PSD-95. J Neurosci 26:10164-10176.
Choi JM, Romeo RD, Brake WG, Bethea CL, Rosenwaks Z, McEwen BS (2003) Estradiol increases pre- and post-synaptic proteins in the CA1 region of the hippocampus in female rhesus macaques (Macaca mulatta). Endocrinology 144:4734-4738.
Christensen A, Dewing P, Micevych P (2015) Immediate early gene activity-regulated cytoskeletal-associated protein regulates estradiol-induced lordosis behavior in female rats. J Neurosci Res 93:67-74.
Chung W, Chen J, HM S, (2008) Fish Oil Supplementation of Control and (n-3) Fatty Acid-Deficient Male Rats Enhances Reference and Working Memory Performance and Increases Brain Regional Docosahexaenoic Acid Levels. J Nutr 138:1165-1171.
Ciccarone V, Spengler B, Meyers M, Biedler J, Ross R (1989) Phenotypic diversification in human neuroblastoma cells expression of distinct neural crest lineages. Cancer Res 49:219-225.
Constantinescu R, Constantinescu A, Reichmann H, Janetzky B (2007) Neuronal differentiation and long-term culture of the human neuroblastoma line SH-SY5Y. J Neural Transm 72:17-28.
Dagai L, Peri-Naor R, Birk RZ (2009) Docosahexaenoic acid significantly stimulates immediate early response genes and neurite outgrowth. Neurochem Res 34:867-875.
Ditkoff E, WG C, Cristo M, Lobo R (1991) Estrogen improves psychological function in asymptomatic postmenopausal women. Obstet Gynaecol 78:991-996.
Duplus E, Glorian M, Forest C (2000) Fatty acid regulation of gene transcription. J Biol Chem 275:30749-30752.
Edelmann L, Hanson P, Chapman E, Jahn R (1995) Synaptobrevin binding to synaptophysin a potential mechanism for controlling the exocytotic fusion machine. EMBO J 14:224-231.
Fei E, Xiong WC, Mei L (2015) Ephrin-B3 recruits PSD-95 to synapses. Nat Neurosci 18:1535-1537.
Green P, Glozman S, Kamensky B, Yavin E, (1999) Developmental changes in rat brain membrane lipids and fatty acids the preferential prenatal accumulation of docosahexaenoic acid . J Lipids 40:960-967.
Green S, Kumar V, Krust A, Walter P, Chambon P (1986) Structural and functional domains of the estrogen receptor. Cold Spring Harb Symp Quant 751-760.
Greene G, Gilna P, Waterfield M, Baker A, Hort Y, Shine J (1986) Sequence and expression of human estrogen receptor complementary DNA. Science 231:1150-1154.
Hadjighassem M, Kamalidehghan B, Shekarriz N, Baseerat A, Molavi N, Mehrpour M, Joghataei MT, Tondar M, Ahmadipour F, Meng GY (2015) Oral consumption of alpha-linolenic acid increases serum BDNF levels in healthy adult humans. Nutr J 14.
Handa Sa (2002) Estrogen Regulates the Development of Brain-Derived Neurotrophic Factor mRNA and Protein in the Rat Hippocampus. Journal Neurosci 22:2650-2659.
Hao J, Rapp PR, Leffler AE, Leffler SR, Janssen WG, Lou W, McKay H, Roberts JA, Wearne SL, Hof PR, Morrison JH (2006) Estrogen alters spine number and morphology in prefrontal cortex of aged female rhesus monkeys. J Neurosci 26:2571-2578.
Kawakita E, Hashimoto M, Shido O (2006) Docosahexaenoic acid promotes neurogenesis in vitro and in vivo. Neuroscience 139:991-997.
Keith D, El-Husseini A (2008) Excitation control: balancing PSD-95 function at the synapse. Front Mol Neurosci 1:4.
Koehler KF, Helguero LA, Haldosen LA, Warner M, Gustafsson JA (2005) Reflections on the discovery and significance of estrogen receptor beta. Endocr Rev 26:465-478.
KS MSaK (2001) Mechanisms of estrogen receptor-mediated agonistic and antagonistic effects. The Handbook of Environmental Chemistry 3.
Kuiper G, Carlsson B, Grandien K, Enmark E, Haggblad J, Nilsson S, Gustafsson J (1996) Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors α and β. Endocrinology 138:863-871.
Kuiper GG, Carlsson B, Grandien K (1997) Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors α and β. Endocrinology 138:863-871.
Kumamaru E, Numakawa T, Adachi N, Yagasaki Y, Izumi A, Niyaz M, Kudo M, Kunugi H (2008) Glucocorticoid prevents brain-derived neurotrophic factor-mediated maturation of synaptic function in developing hippocampal neurons through reduction in the activity of mitogen-activated protein kinase. Mol Endocrinol 22:546-558.
Labelle C, Leclerc N (2000) Exogenous BDNF, NT-3 and NT-4 differentially regulate neurite outgrowth in cultured hippocampal neurons. Brain Res Dev Brain Res 123:1-11.
Lauritzen L, Hoppe C, Straarup EM, Michaelsen KF (2005) Maternal fish oil supplementation in lactation and growth during the first 2.5 years of life. Pediatr Res 58:235-242.
Leclercq G (2001) Molecular forms of the estrogen receptor in breast cancer. J Steroid Biochem Mol Biol 80:259-272.
Levitz M, Young BK (1978) Estrogens in Pregnancy. 35:109-147.
Lindsay R (1988) Nerve growth factors (NGF, BDNF) enhance axonal regeneration but are not required for survival of adult sensory neurons. J Neurosci 8:2394-2405.
Liu F, Day M, Muniz LC, Bitran D, Arias R, Revilla-Sanchez R, Grauer S, Zhang G, Kelley C, Pulito V, Sung A, Mervis RF, Navarra R, Hirst WD, Reinhart PH, Marquis KL, Moss SJ, Pangalos MN, Brandon NJ (2008) Activation of estrogen receptor-beta regulates hippocampal synaptic plasticity and improves memory. Nat Neurosci 11:334-343.
Liu L, Wang J, Zhao L, Nilsen J, McClure K, Wong K, Brinton RD (2009) Progesterone increases rat neural progenitor cell cycle gene expression and proliferation via extracellularly regulated kinase and progesterone receptor membrane components 1 and 2. Endocrinology 150:3186-3196.
Liu ZH, Yip PK, Adams L, Davies M, Lee JW, Michael GJ, Priestley JV, Michael-Titus AT (2015) A single bolus of docosahexaenoic acid promotes neuroplastic changes in the innervation of spinal cord interneurons and motor neurons and improves functional recovery after spinal cord injury. J Neurosci 35:12733-12752.
Lu J, Wu Y, Sousa N, Almeida OF (2005) SMAD pathway mediation of BDNF and TGF beta 2 regulation of proliferation and differentiation of hippocampal granule neurons. Development 132:3231-3242.
Luine V, Richards S, Wu V, Beck K (1998) Estradiol enhances learning and memory in a spatial memory task and effects levels of monoaminergic neurotransmitters. Horm Behav 34:149-162.
Ma Z, Spreafico E, Pollio G, Santagati S, Conti E, Cattaneo E, Maggi A (1993) Activated estrogen receptor mediates growth arrest and differentiation of a neuroblastoma cell line. Proc Natl Acad Sci USA
90:3740-3744.
Mangelsdorf D, Thummel C, Beato M, Herrlich P, Schütz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, Evans R (1995) The nuclear receptor superfamily The second decade. Cell 83:835-839.
Martinez M (1992) Tissue levels of polyunsaturated fatty acids during early human development. J Pediatr 120:129-138.
McLaughlin KJ, Bimonte-Nelson H, Neisewander JL, Conrad CD (2008) Assessment of estradiol influence on spatial tasks and hippocampal CA1 spines: evidence that the duration of hormone deprivation after ovariectomy compromises 17beta-estradiol effectiveness in altering CA1 spines. Horm Behav 54:386-395.
Mokin M, Lindahl JS, Keifer J (2006) Immediate-early gene-encoded protein Arc is associated with synaptic delivery of GluR4-containing AMPA receptors during in vitro classical conditioning. J Neurophy 95:215-224.
Muesburger S, Keast J (2001) Testosterone and nerve growth factor have distinct but interacting effects on structure and neurotransmitter expression of adult pelvic ganglion cells in vitro. Neuroscience 108:331-340.
O'Neal M, Means L, Poole M, Hamm R (1996) Estrogen affects performance of ovariectomized rats in a two-choice water-escape working memory task. Psychoneuroendocrinology 21:51-65.
Otto S, Houwelingen A, Badart-Smook A, G H, (2001) Comparison of the peripartum and postpartum phospholipid polyunsaturated fatty acid profiles of lactating and nonlactating women. Am J Clin Nutr 73:1074-1079.
Pan M, Li Z, Yeung V, Xu R (2010) Dietary supplementation of soy germ phytoestrogens or estradiol improves spatial memory performance and increases gene expression of BDNF, TrkB receptor and synaptic factors in ovariectomized rats. Nutrition & Metabolism 7.
Park SW, Lee JG, Seo MK, Lee CH, Cho HY, Lee BJ, Seol W, Kim YH (2014) Differential effects of antidepressant drugs on mTOR signalling in rat hippocampal neurons. Int J Neuropsychopharmacol 17:1831-1846.
Pike C (1999) Estrogen Modulates Neuronal Bcl-xl Expression and β-Amyloid-Induced Apoptosis. Journal of Neurochem 72:1552-1563.
Poo M (2001) Neurotrophins as synaptic modulators. Nature reviews Neuroscience 2:24-32.
Rao JS, Ertley RN, Lee HJ, DeMar JC, Jr., Arnold JT, Rapoport SI, Bazinet RP (2007) n-3 polyunsaturated fatty acid deprivation in rats decreases frontal cortex BDNF via a p38 MAPK-dependent mechanism. Mol Psychiatry 12:36-46.
Ruiz-Palmero I, Hernando M, Garcia-Segura LM, Arevalo MA (2013) G protein-coupled estrogen receptor is required for the neuritogenic mechanism of 17beta-estradiol in developing hippocampal neurons. Mol Cell Endocrinol 372:105-115.
Rune G, Wehrenberg U, Prange-Kiel J, Zhou L, Adelmann G, Frotscher M (2002) Estrogen up-regulates estrogen receptor α and synaptophysin in slice cultures of rat hippocampus. Neuroscience 113:167-175.
Söderberg M, Edlund C, Kristensson K, Dallner G (1991) Fatty acid composition of brain phospholipids in aging and in Alzheimer’s disease. Lipids 26:421-426.
Sakamoto T, Cansev M, Wurtman RJ (2007) Oral supplementation with docosahexaenoic acid and uridine-5'-monophosphate increases dendritic spine density in adult gerbil hippocampus. Brain Res 1182:50-59.
Sasahara K, Shikimi H, Haraguchi S, Sakamoto H, Honda S, Harada N, Tsutsui K (2007) Mode of action and functional significance of estrogen-inducing dendritic growth, spinogenesis, and synaptogenesis in the developing Purkinje cell. The J Neurosci 27:7408-7417.
Schmidt PJ, Nieman L, Danaceau MA, Tobin MB, Roca CA, Murphy JH, Rubinow DR (2000) Estrogen replacement in perimenopause-related depression: a preliminary report. Am J Obstet Gynecol 183:414-420.
Shao W, Brown M (2004) Advances in estrogen receptor biology: prospects for improvements in targeted breast cancer therapy. Breast Cancer Res 6:39-52.
Sharma K, Mehra RD, Dhar P, Vij U (2007) Chronic exposure to estrogen and tamoxifen regulates synaptophysin and phosphorylated cAMP response element-binding (CREB) protein expression in CA1 of ovariectomized rat hippocampus. Brain Res 1132:10-19.
Shepherd JD, Bear MF (2011) New views of Arc, a master regulator of synaptic plasticity. Nature neuroscience 14:279-284.
Shughrue P, Lane V, I M (1997) Comparative distribution of estrogen receptor‐α and‐β mRNA in the rat central nervous system. J Comp Neurol 388:507-525.
Sidhu VK, Huang BX, Desai A, Kevala K, Kim HY (2016) Role of DHA in aging-related changes in mouse brain synaptic plasma membrane proteome. Neurobiol Aging 41:73-85.
Singer C, Figueroa-Masot X, Batchelor R, Dorsa D (1999) The Mitogen-Activated Protein Kinase Pathway Mediates Estrogen Neuroprotection after Glutamate Toxicity in Primary Cortical Neurons. J Neurosci 19:2455-2463.
Siriphorn A, Chompoopong S, Tilokskulchai K (2009) The Neurite Outgrowth Measurement of Dorsal Root Ganglia Explants Cultured on Estrogen and Schwann Cell-Conditioned Medium by Using Image Analysis. Siriraj Hosp Gaz 61:130-135.
Soto A, Sonnenschein C (1985) The role of estrogens on the proliferation of human breast tumor cells (MCF-7). J Steroid Biochem 23:87-94.
Spencer-Segal JL, Tsuda MC, Mattei L, Waters EM, Romeo RD, Milner TA, McEwen BS, Ogawa S (2012) Estradiol acts via estrogen receptors alpha and beta on pathways important for synaptic plasticity in the mouse hippocampal formation. Neuroscience 202:131-146.
Srivastava DP, Woolfrey KM, Liu F, Brandon NJ, Penzes P (2010) Estrogen receptor ss activity modulates synaptic signaling and structure. J Neurosci 30:13454-13460.
Stillwell W, Wassall SR (2003) Docosahexaenoic acid: membrane properties of a unique fatty acid. Chem Phys Lipids 126:1-27.
Su H (2010) Mechanisms of n-3 fatty acid-mediated development and maintenance of learning memory performance. J Nutr Biochem 21:364-373.
Tanapat P, Hastings N, Reeves A, Gould E (1999) Estrogen stimulates a transient increase in the number of new neurons in the dentate gyrus of the adult female rat. J Neurosci 19:5782-5801.
Thiele C, Hannah M, Fahrenholz F, Huttner W (2000) Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles. Nat Cell Biol 2:42-49.
Tsutsui K, Ukena K, Sakamoto H, Okuyama S, Haraguchi S (2011) Biosynthesis, mode of action, and functional significance of neurosteroids in the purkinje cell. Front Endocrinol (Lausanne) 2:61.
Vines A, Delattre AM, Lima MM, Rodrigues LS, Suchecki D, Machado RB, Tufik S, Pereira SI, Zanata SM, Ferraz AC (2012) The role of 5-HT(1)A receptors in fish oil-mediated increased BDNF expression in the rat hippocampus and cortex: a possible antidepressant mechanism. Neuropharmacology 62:184-191.
Wang L, Andersson S, Warner M, Gustafsson JA (2003) Estrogen receptor (ER)beta knockout mice reveal a role for ERbeta in migration of cortical neurons in the developing brain. Proc Natl Acad Sci USA 100:703-708.
Wibrand K, Berge K, Messaoudi M, Duffaud A, Panja D, Bramham C, Burri L (2013) Enhanced cognitive function and antidepressant-like effects after krill oil supplementation in rats. Lipids in Health and Disease 12.
Woolley C, McEwen B (1992) Estradiol mediates fluctuation in hippocampal synapse density during the estrous cycle in the adult rat . J Neurosci 12:2549-2554.
Yakunin E, Loeb V, Kisos H, Biala Y, Yehuda S, Yaari Y, Selkoe DJ, Sharon R (2012) Alpha-synuclein neuropathology is controlled by nuclear hormone receptors and enhanced by docosahexaenoic acid in a mouse model for Parkinson's disease. Brain Pathol 22:280-294.
Zhao L, Chen Q, Brinton D (2002) Neuroprotective and neurotrophic efficacy of phytoestrogens in cultured hippocampal neurons. Exp Biol Med 227:509-519.
Zhao L, O'Neill K, Brinton RD (2006) Estrogenic agonist activity of ICI 182,780 (Faslodex) in hippocampal neurons: implications for basic science understanding of estrogen signaling and development of estrogen modulators with a dual therapeutic profile. J Pharmacol Exp Ther 319:1124-1132.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19334-
dc.description.abstract二十二碳六烯酸(DHA, 22:6 n-3)在大腦發育時迅速累積於腦部,對於神經新生、神經分化和神經細胞突起增長扮演著重要的角色。雌激素在胎兒時期有高表現而且對於神經細胞突起增長也扮演著重要的角色。本實驗欲探討雌激素與二十二碳六烯酸在人類神經母細胞瘤細胞株SH-SY5Y中對於神經細胞突起增長和相關蛋白質表現之影響。未分化的SH-SY5Y細胞培養於含有胎牛血清或經活性炭處理之低固醇類荷爾蒙胎牛血清的培養基,再以全反式視黃酸誘導細胞分化。誘導分化時分別添加二十二碳六烯酸、雌二醇、甲型或乙型雌激素受體促效劑、拮抗劑,培養六天後觀察細胞型態以及蛋白質表現。細胞型態以顯微鏡觀察拍攝再以NIH Image J軟體分析,細胞蛋白質表現則以西方墨點法分析。
本研究發現培養於活性炭處理之胎牛血清培養基的SH-SY5Y細胞最大神經細胞突起長度比培養於胎牛血清組顯著降低。雌二醇可以顯著增加SH-SY5Y細胞的最大神經細胞突起長度,但黃體素、睪固酮、醛固酮與地塞米松皆無此效果。給予乙型雌激素受體促效劑WAY200070可顯著增加最大神經細胞突起長度,而給予甲型雌激素受體促效劑PPT則無此效果。此外給予乙型雌激素受體拮抗劑PHTPP可有效降低由雌二醇增加的最大神經細胞突起長度,給予甲型雌激素受體拮抗劑MPP則沒有此效果。單獨給予二十二碳六烯酸並不能增加最大神經細胞突起長度,但同時給予二十二碳六烯酸與雌二醇則可增加最大神經細胞突起長度。給予二十二碳六烯酸可以增加腦源性神經營養因子、乙型色胺酸受體激酶、突觸後緻密蛋白95、突觸體蛋白與細胞骨架活性調節蛋白的表現,但給予雌二醇並沒有該效果。本研究結論為雌二醇促進神經細胞突起增長主要透過乙型雌激素受體路徑而非甲型,且雌二醇並不影響神經細胞突起相關蛋白質表現;而二十二碳六烯酸可增加神經細胞突起相關蛋白質表現以及雌二醇誘導之神經細胞突起增長。
zh_TW
dc.description.abstractDocosahexaenoic acid (DHA, 22:6 n-3) accumulates rapidly during brain development and plays an important role in neurogenesis, neuronal differentiation and neurite outgrowth. Estrogen is rich in fetus and plays an important role in neurite outgrowth. The aim of this study was to examine the interaction of estradiol and DHA on neurite outgrowth and neurite-related protein expression in human neuroblastoma SH-SY5Y cell line.
Undifferentiated SH-SY5Y cells were cultured in FBS or characol-dextran treated steroid hormone-free FBS medium containing 1 μM retinoic acid to induce neuronal differentiation then supplemented with or without DHA, estradiol, estrogen receptor (ER) agoinst or antagoinst for 6 days. The neuronal morphology were observed by phase-contrast photomicrographs and determined by the NIH Image J software. The expression of neuronal proteins were analyzed by Western blotting.
We found that the max neurite length was significantly decreased in SH-SY5Y cells cultured in steroid hormone-free FBS medium compared to that in the FBS medium. Estradiol but not progesterone, testosterone, dexamethasone and aldosterone significantly increased the max neurite length in SH-SY5Y cells. Supplementation of ERβagonist WAY200070 but not ERαagonist PPT significantly increased max neurite length. In addition, ERβantagonist PHTPP but not ERαantagonist MPP significantly decreased estradiol-enhanced max neurite length. The max neurite length was not changed in DHA supplementation alone but was enhanced in supplementation of both DHA and estradiol. The expression of BDNF, TrkB, PSD95, synaptophysin, ARC were significantly increased by DHA but not by estradiol.
It was concluded that estradiol promote neurite outgrowth is mainly through ERβbut not ERαdownstream and no effect on neurite-related protein expression. DHA increased the neurite-related protein expression and enhanced the effect of estradiol on neurite outgrowth.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:54:12Z (GMT). No. of bitstreams: 1
ntu-105-R02441018-1.pdf: 1871974 bytes, checksum: 8c4e28b4ecda351a36a320cfe8435f5e (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents致謝 I
摘要 II
Abstract III
目錄 V
圖表目錄 VIII
第壹章.緒論 1
一、雌激素(Estrogen) 1
二、雌激素受體(Estrogen receptor;ER) 2
三、二十二碳六烯酸 3
四、雌激素與二十二碳六烯酸的交互作用 4
五、神經突起相關蛋白質(Neurite-related protein) 5
六、人類神經母細胞瘤SH-SY5Y細胞株 7
第貳章.研究目的與設計 8
一、研究目標 8
二、研究假設 8
三、實驗設計 9
第參章.材料與方法 12
一、SH-SY5Y人類神經母細胞瘤細胞培養 12
二、包覆葡萄醣酐的活性炭處理之胎牛血清 (Charcoal-dextran-treated FBS, CD-FBS)製備 14
三、固醇類荷爾蒙濃度定量 15
四、與牛血清白蛋白結合的二十二碳六烯酸溶液(BSA-bound DHA solution)製備 15
五、非水溶性藥品酒精溶液製備 16
六、SH-SY5Y細胞型態觀察與分析 17
七、SH-SY5Y細胞蛋白質萃取 17
八、蛋白質濃度定量 19
九、西方墨點法 19
十、統計方法 24
第肆章.實驗結果 25
一、E2對於SH-SY5Y人類神經母細胞瘤細胞neurite outgrowth之影響 25
二、ERα、ERβ agonist和antagonist對於SH-SY5Y細胞neurite outgrowth之影響 26
三、DHA對於SH-SY5Y細胞neurite outgrowth之影響 27
四、E2、ERα與ERβ antagonist對於SH-SY5Y細胞neurite相關蛋白質表現之影響 28
五、DHA、E2和ERα與ERβ antagonist對於SH-SY5Y細胞neurite相關蛋白質表現之影響 28
六、DHA和E2對於SH-SY5Y細胞ERα與ERβ表現之影響 30
第伍章.討論 31
一、E2對於SH-SY5Y細胞neurite outgrowth影響之討論 31
二、ERα、ERβ agonist和antagonist對於SH-SY5Y細胞neurite outgrowth影響之討論 32
三、DHA對於SH-SY5Y細胞neurite outgrowth影響之討論 33
四、E2和ERα、ERβ antagonist對於SH-SY5Y細胞neurite-related protein表現影響之討論 34
五、DHA、E2和ERα、ERβ antagonist對於SH-SY5Y細胞neurite-related protein表現影響之討論 35
六、DHA對於SH-SY5Y細胞ERα與ERβ表現影響之討論 36
七、E2與DHA對於SH-SY5Y細胞neurite outgrowth以及neurite-related protein表現影響之討論 36
第陸章.總結 38
第柒章.圖表 39
第捌章.參考文獻 52
dc.language.isozh-TW
dc.title探討雌激素與二十二碳六烯酸對於人類神經母細胞瘤細胞株SH-SY5Y神經細胞突起生長與相關蛋白質之影響zh_TW
dc.titleEffect of estrogen and docosahexaenoic acid on neurite outgrowth and neurite-related protein in human neuroblastoma SH-SY5Y cell lineen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃青真,呂紹俊,林炎壽
dc.subject.keyword雌激素,雌激素受體,二十二碳六烯酸,神經細胞突起生長,神經細胞突起相關蛋白質,zh_TW
dc.subject.keywordestrogen,estrogen receptor,DHA,neurite outgrowth,neurite-related protein,en
dc.relation.page59
dc.identifier.doi10.6342/NTU201600858
dc.rights.note未授權
dc.date.accepted2016-07-15
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生理學研究所zh_TW
顯示於系所單位:生理學科所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
1.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved