請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19326完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳宗霖(Tzong-Lin Wu) | |
| dc.contributor.author | I-Ju Chen | en |
| dc.contributor.author | 陳奕如 | zh_TW |
| dc.date.accessioned | 2021-06-08T01:53:50Z | - |
| dc.date.copyright | 2016-08-02 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-07-16 | |
| dc.identifier.citation | [1] W. P. Siriwongpairat and K. J. R. Liu, Ultra-Wideband Communications Systems – Multiband OFDM Approach, Wiley-IEEE Press, 2007.
[2] E. Perahia, C. Cordeiro, M. Park, and L. L. Yang, “IEEE 802.11ad: Defining the next generation multi-Gbps Wi-Fi,” in Proc. 7th IEEE Consum. Commun. Netw. Conf., Jan. 2010, pp. 1–5. [3] R. S. Elliott, Antenna Theory and Design, 1st ed. Wiley-IEEE Press, 2003. [4] J. Butler and R. Lowe, “Beam-forming matrix simplifies design of electronically scanned antennas,” Electronic Design, vol. 9, pp. 170-173, Apr. 1961. [5] A. V.-Garcia, S. T. Nicolson, J.-W. Lai, A. Natarajan, P.-Y. Chen, S. K. Reynolds, J.-H. C. Zhan, D. G. Kam, D. Liu, and B. A. Floyd, “A fully-integrated 16-element phased-array transmitter in SiGe BiCMOS for 60 GHz communications,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2757-2773, Dec. 2010. [6] A. Natarajan, S. K. Reynolds, M.-D. Tsai, S. T. Nicolson, J.-H. C. Zhan, D. G. Kan, D. Liu, Y.-Li O. Huang, A. V.-Garcia, and B. A. Floyd, “A fully-integrated 16-element phased-array receiver in SiGe BiCMOS for 60-GHz communications,” IEEE J. Solid-State Circuits, vol. 46, no. 5, pp. 1059–1075, May 2011. [7] M. Ohira, A. Miura, and M. Ueba, “60-GHz wideband substrate integrated waveguide slot array using closely spaced elements for planar multisector antenna,” IEEE Trans. Antennas Propag., vol. 58, no. 3, pp. 993–998, Mar. 2010. [8] Y. Li, Z. N. Chen, X. Qing, Z. Zhang, J. Xu, and Z. Feng, “Axial ratio bandwidth enhancement of 60-GHz substrate integrated waveguide-fed circularly polarized LTCC antenna array,” IEEE Trans. Antennas Propag., vol. 60, no. 10, pp. 4619–4626, Oct. 2012. [9] W. Liu, Z. N. Chen, and X. Qing, “60-GHz thin broadband high-gain LTCC metamaterial-mushroom antenna array,” IEEE Trans. Antennas Propag., vol. 62, no. 9, pp. 4592–4601, Sep. 2014. [10] T. Tomura, Y. Miura, M. Zhang, J. Hirokawa, and M. Ando, “A 45° linearly polarized hollow-waveguide corporate-feed slot array antenna in the 60-GHz band,” IEEE Trans. Antennas Propag., vol. 60, no. 8, pp. 3640–3646, Aug. 2012. [11] M. Sun, Y. P. Zhang, D. Liu, K. M. Chua, and L. L. Wai, “A ball grid array package with a microstrip grid array antenna for a single-chip 60-GHz receiver,” IEEE Trans. Antennas Propag., vol. 59, no. 6, pp. 2134–2140, Jun. 2011. [12] B. Zhang and Y. P. Zhang, “Grid array antennas with subarrays and multiple feeds for 60-GHz radios,” IEEE Trans. Antennas Propag., vol. 60, no. 5, pp. 2270–2275, May 2012. [13] B. Zhang, D. Titz, F. Ferrero, C. Luxey, and Y. P. Zhang, “Integration of quadruple linearly-polarized microstrip grid array antennas for 60-GHz antenna-in-package applications,” IEEE Trans. Compon., Packag., Manuf. Technol., vol. 3, no. 8, pp. 1293–1300, Aug. 2013. [14] C. Liu, Y.-X. Guo, X. Bao, and S.-Q. Xiao, “60-GHz LTCC integrated circularly polarized helical antenna array,” IEEE Trans. Antennas Propag., vol. 60, no. 3, pp. 1329–1335, Mar. 2012. [15] W. Yang, K. Ma, K. S. Yeo, and W. M. Lim, “A Compact high-performance patch antenna array for 60-GHz applications,” IEEE Antennas Wireless Propag. Lett., vol. 15, pp. 313-316, 2016. [16] L. Wang, Y.-X. Guo, and W.-X. Sheng, “Wideband high-gain 60-GHz LTCC L-probe patch antenna array with a soft surface,” IEEE Trans. Antennas Propag., vol. 61, no. 4, pp. 1802–1809, Apr. 2013. [17] M. F. Karim, Y.-X. Guo, M. Sun, J. Brinkhoff, L. C. Ong, K. Kang, and F. Lin, “Integration of SiP-based 60-GHz 4×4 antenna array with CMOS OOK transmitter and LNA,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 7, pp. 1869–1878, Jul. 2011. [18] S. Yoshida, Y. Suzuki, T. T. Ta, S. Kameda, N. Suematsu, T. Takagi, and K. Tsubouchi, “A 60-GHz band planar dipole array antenna using 3-D SiP structure in small wireless terminals for beamforming applications,” IEEE Trans. Antennas Propag., vol. 61, no. 7, pp. 3502–3510, Jul. 2013. [19] H. Chu, Y.-X. Guo, and Z. Wang, “60-GHz LTCC wideband vertical off-center dipole antenna and arrays,” IEEE Trans. Antennas Propag., vol. 61, no. 1, pp. 153–161, Jan. 2013. [20] C. E. Patterson, W. T. Khan, G. E. Ponchak, G. S. May, and J. Papapolymerou, “A 60-GHz active receiving switched-beam antenna array with integrated butler matrix and GaAs amplifiers,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 11, pp. 3599–3607, Nov. 2012. [21] W. F. Moulder, W. Khalil, and J. L. Volakis, “60-GHz two-dimensionally scanning array employing wideband planar switched beam network,” IEEE Antennas Wireless Propag. Lett., vol. 9, pp. 818–821, Sep. 2010. [22] C.-H. Tseng, C.-J. Chen, and T.-H. Chu, “A low-cost 60-GHz switched-beam patch antenna array with butler matrix network,” IEEE Antennas Wireless Propag. Lett., vol. 7, pp. 432–435, 2008. [23] S. Lee, S. Song, Y. Kim, J. Lee, C. Cheon, K.-S. Seo, and Y. Kwon, “A V-band beam-steering antenna on a thin-film substrate with a flip-chip interconnection,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 4, pp. 287–289, Apr. 2008. [24] D. Liu, J. A. G. Akkermans, O.-C. Chen, and B. A. Floyd, “Packages with integrated 60-GHz aperture-coupled patch antennas,” IEEE Trans. Antennas Propag., vol. 59, no. 10, pp. 3607–3616, Oct. 2011. [25] D. G. Kam, D. Liu, A. Natarajan, S. K. Reynolds, and B. A. Floyd, “Organic Packages with embedded phased-array antennas for 60-GHz wireless chipsets,” IEEE Trans. Compon., Packag. Manuf. Technol., vol. 1, no. 11, pp. 1806–1814, Nov. 2011. [26] J.-L. Kuo, Y.-F. Lu, T.-Y. Huang, Y.-L. Chang, Y.-K. Hsieh, P-J. Peng, I-C. Chang, T.-Z. Tsai, K.-Y. Kuo, W.-Y. Hsiung, J. Wang, Y. A. Hsu, K.-Y. Lin, H.-C. Lu, Y.-C. Lin, L.-H. Lu, T.-W. Huang, R.-B. Wu, and H. Wang, “60-GHz four-element phased-array transmit/receive system-in-package using phase compensation techniques in 65-nm flip-chip CMOS process,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 3, pp. 743–756, Mar. 2012. [27] Y. J. Cheng, X. Y. Bao, and Y. X. Guo, “60-GHz LTCC miniaturized substrate integrated multibeam array antenna with multiple polarizations,” IEEE Trans. Antennas Propag., vol. 61, no. 12, pp. 5958–5967, Dec. 2013. [28] Y. T. Lo, D. Solomon, and W. F. Richards, 'Theory and Experiment on Microstrip Antennas,' IEEE Trans. Antennas Propag., vol. 27, no. 2, pp. 137–145, Mar. 1979. [29] R. Bancroft, Microstrip and Printed Antenna Design, 2nd ed. SciTech, 2009. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19326 | - |
| dc.description.abstract | 本論文使用低姿態貼片天線為基本單元,實現於薄型六層板。為改善傳統貼片天線的反射係數窄頻之特性,蝕刻一U型槽孔於天線體製造多共振路徑達成寬頻響應,並再加入細長的寄生元件於貼片天線兩旁,增加些微操作頻寬和天線增益。
接著,本論文實現一組60 GHz二乘二貼片天線陣列,利用波束形成技術(Beamforming) 於指定寬邊方向 (Broadside) 立體角範圍內提供所需的天線增益,可應用於第五代無線行動通訊系統當中。量測結果顯示,本文所提出的天線陣列設計,輸入反射係數於60 GHz的操作頻寬 (57-66 GHz) 皆小於 -10 dB。為簡化系統設計,饋入網路選用巴特勒矩陣提供的四組相位差。透過切換饋入相位用以改變主波束方向,使總體波束涵蓋指定寬邊立體角範圍達成目標。另一方面,為最大化指定寬邊立體角範圍之涵蓋率,本論文亦提出一最佳化演算法,利用電磁模擬軟體HFSS所計算的天線單元輻射場型,配合MATLAB計算陣列因數 (Array Factor),以快速算出天線陣列單元之間距及饋入順序的最佳選擇。 根據實驗結果,在天頂角等於0~30度與方位角等於0~360度的立體角範圍內,以超過6.5 dBi天線增益為條件,達到80%以上的涵蓋率。最後,單一貼片天線與二乘二貼片天線陣列的輻射場形與模擬預測皆有相當好的一致性。 | zh_TW |
| dc.description.abstract | This thesis realized a low-profile patch antenna is utilized as an antenna element. To improve the inherently narrow property of a traditional patch antenna, a U-slot is etched on the patch to create another resonant path and reach a wideband performance. Furthermore, two parasitic elements are placed beside the patch to enhance the bandwidth and gain.
A 60-GHz 2×2 patch antenna array with beamforming technology is then proposed to provide required antenna gains in the broadside direction. The reflection coefficient of array is measured and the -10 dB bandwidth can cover from 57 to 66 GHz. For system simplification, a Butler matrix is used to create four sets of excitation phases. With different excitation phases, the radiation beams can point to different directions and overall switched-beams are able to reach the desired gain in certain areas. On the other hand, in order to maximize the covering percentage in the target gain region, an optimization algorithm using MATLAB is introduced. The algorithm rapidly calculate total patterns then give out the optimized array arrangement. According to the experiment results, in the region of | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T01:53:50Z (GMT). No. of bitstreams: 1 ntu-105-R03942018-1.pdf: 4368857 bytes, checksum: 48baf38a7baf63f5bca5f55422d882c6 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 口試委員會審定書 ii
中文摘要 iii ABSTRACT iv CONTENTS vi LIST OF FIGURES viii LIST OF TABLES xii Chapter 1 Introduction 1 1.1 Research Motivation 1 1.2 Literature Survey 3 1.3 Contribution 5 1.4 Thesis Organization 6 Chapter 2 Proposed 60-GHz Patch Antenna 9 2.1 Theory of Patch Antenna 9 2.2 Antenna Configuration and Design 18 2.3 Parameter Studies 27 Chapter 3 Design of Planar Patch Array 34 3.1 Array Theory 34 3.2 Introduction of Butler Matrix 37 3.3 Optimization Algorithm using MATLAB 44 3.3.1 Estimation of Covering Percentage 45 3.3.2 Pseudo Codes 48 3.3.3 Simulated Results and Discussion 53 Chapter 4 Measurement of 60-GHz Antenna 58 4.1 Measurement with Connector 58 4.2 Results of Proposed 60-GHz Patch Antenna 62 4.3 Results of Proposed 60-GHz Patch Array 66 4.3.1 Similarity Factor for Pattern Measurement 71 4.3.2 CP Evaluation 83 4.3.3 Line Loss 86 Chapter 5 Conclusions 88 5.1 Summary 88 5.2 Future Work 90 REFERENCE 91 | |
| dc.language.iso | en | |
| dc.title | 應用於60 GHz無線通訊波束形成技術之寬邊貼片天線陣列 | zh_TW |
| dc.title | Beamforming Broadside Patch Array for 60-GHz Wireless Communications | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳瑞北(Ruey-Beei Wu),陳士元(Shih-Yuan Chen),盧信嘉(Hsin-Chia Lu) | |
| dc.subject.keyword | 60 GHz,貼片天線,波束形成技術,巴特勒矩陣,天線陣列,最佳化演算法, | zh_TW |
| dc.subject.keyword | 60 GHz,patch antenna,beamforming technique,Butler matrix,antenna array,optimization algorithm, | en |
| dc.relation.page | 95 | |
| dc.identifier.doi | 10.6342/NTU201600953 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2016-07-18 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 4.27 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
