Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19324
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林江珍
dc.contributor.authorCheng-Yuan Fangen
dc.contributor.author方程遠zh_TW
dc.date.accessioned2021-06-08T01:53:45Z-
dc.date.copyright2016-07-26
dc.date.issued2016
dc.date.submitted2016-07-18
dc.identifier.citation1. K. M. M. Abou El-Nour, A. a. Eftaiha, A. Al-Warthan and R. A. A. Ammar, Arabian Journal of Chemistry, 2010, 3, 135-140.
2. S. Huang, L. Dai and A. W. H. Mau, The Journal of Physical Chemistry B, 1999, 103, 4223-4227.
3. S. Sinha Ray and M. Okamoto, Progress in Polymer Science, 2003, 28, 1539-1641.
4. D. A. Tomalia, Materials Today, 2005, 8, 34-46.
5. J. J. Lin, R. X. Dong and W. C. Tsai, InTech, 2010, 161-176.
6. M.-J. Wang, C. A. Gray, S. R. Reznek, K. Mahmud and Y. Kutsovsky, in Encyclopedia of Polymer Science and Technology, John Wiley & Sons, Inc., 2002, DOI: 10.1002/0471440264.pst477.
7. N. Grobert, Materials Today, 2007, 10, 28-35.
8. N. Grossiord, J. Loos, L. van Laake, M. Maugey, C. Zakri, C. E. Koning and A. J. Hart, Advanced Functional Materials, 2008, 18, 3226-3234.
9. S. Niyogi, M. A. Hamon, H. Hu, B. Zhao, P. Bhowmik, R. Sen, M. E. Itkis and R. C. Haddon, Accounts of Chemical Research, 2002, 35, 1105-1113.
10. M. Zheng and B. A. Diner, Journal of the American Chemical Society, 2004, 126, 15490-15494.
11. B. I. Yakobson, Appl Phys Lett, 1998, 72, 918-920.
12. M. B. Nardelli, B. I. Yakobson and J. Bernholc, Phys Rev B, 1998, 57, R4277-R4280.
13. M. B. Nardelli, B. I. Yakobson and J. Bernholc, Phys Rev Lett, 1998, 81, 4656-4659.
14. P. H. Zhang, P. E. Lammert and V. H. Crespi, Phys Rev Lett, 1998, 81, 5346-5349.
15. M. A. Osman and D. Srivastava, Nanotechnology, 2001, 12, 21-24.
16. A. K. Geim and K. S. Novoselov, Nat Mater, 2007, 6, 183-191.
17. C. W. Chiu and J. J. Lin, Progress in Polymer Science, 2012, 37, 406-444.
18. A. Esmaeili and M. H. Entezari, J Colloid Interf Sci, 2014, 432, 19-25.
19. Y. H. Pai, J. H. Ke, C. C. Chou, J. J. Lin, J. M. Zen and F. S. Shieu, J Power Sources, 2006, 163, 398-402.
20. Y. F. Lan and J. J. Lin, J Phys Chem A, 2009, 113, 8654-8659.
21. Y. Si and E. T. Samulski, Nano Lett, 2008, 8, 1679-1682.
22. J. J. Lin and Y. M. Chen, Langmuir, 2004, 20, 4261-4264.
23. K. Hidehiro and I. Motoyuki, Science and Technology of Advanced Materials, 2010, 11, 044304.
24. R. A. Sperling and W. J. Parak, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2010, 368, 1333-1383.
25. M. Gratzel, Nature, 2001, 414, 338-344.
26. T. Markvart, Solar electricity, John Wiley & Sons, 2000.
27. D. M. Chapin, C. S. Fuller and G. L. Pearson, J Appl Phys, 1954, 25, 676-677.
28. R. H. Bube and R. H. Bube, Photovoltaic materials, World Scientific, 1998.
29. S. E. Shaheen, D. S. Ginley and G. E. Jabbour, Mrs Bull, 2005, 30, 10-19.
30. A. Yella, H. W. Lee, H. N. Tsao, C. Y. Yi and A. K. Chandiran, Science, 2011, 334, 1203-1203.
31. J. G. Xue, B. P. Rand, S. Uchida and S. R. Forrest, Advanced Materials, 2005, 17, 66-+.
32. H. Spanggaard and F. C. Krebs, Solar Energy Materials and Solar Cells, 2004, 83, 125-146.
33. A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin and M. Grätzel, Science, 2011, 334, 629-634.
34. M. Grätzel, Accounts of Chemical Research, 2009, 42, 1788-1798.
35. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos and M. Graetzel, Journal of the American Chemical Society, 1993, 115, 6382-6390.
36. C. H. Henry, Journal of Applied Physics, 1980, 51, 4494-4500.
37. B. O'Regan and M. Gratzel, Nature, 1991, 353, 737-740.
38. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson, Chemical Reviews, 2010, 110, 6595-6663.
39. M. Ye, X. Wen, M. Wang, J. Iocozzia, N. Zhang, C. Lin and Z. Lin, Materials Today, 2015, 18, 155-162.
40. G. Benkö, J. Kallioinen, J. E. I. Korppi-Tommola, A. P. Yartsev and V. Sundström, Journal of the American Chemical Society, 2002, 124, 489-493.
41. G. Ramakrishna, D. A. Jose, D. K. Kumar, A. Das, D. K. Palit and H. N. Ghosh, The Journal of Physical Chemistry B, 2005, 109, 15445-15453.
42. J. B. Asbury, R. J. Ellingson, H. N. Ghosh, S. Ferrere, A. J. Nozik and T. Lian, The Journal of Physical Chemistry B, 1999, 103, 3110-3119.
43. B. O'Regan, J. Moser, M. Anderson and M. Graetzel, The Journal of Physical Chemistry, 1990, 94, 8720-8726.
44. P. Wang, B. Wenger, R. Humphry-Baker, J.-E. Moser, J. Teuscher, W. Kantlehner, J. Mezger, E. V. Stoyanov, S. M. Zakeeruddin and M. Grätzel, Journal of the American Chemical Society, 2005, 127, 6850-6856.
45. M. Grätzel, Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164, 3-14.
46. A. Hagfeldt and M. Gratzel, Chemical Reviews, 1995, 95, 49-68.
47. L. M. Peter, Phys Chem Chem Phys, 2007, 9, 2630-2642.
48. H. Tian and L. Sun, Journal of Materials Chemistry, 2011, 21, 10592-10601.
49. J. Cong, X. Yang, L. Kloo and L. Sun, Energy & Environmental Science, 2012, 5, 9180-9194.
50. J. Nei de Freitas, A. F. Nogueira and M.-A. De Paoli, Journal of Materials Chemistry, 2009, 19, 5279-5294.
51. Y. Wang, Solar Energy Materials and Solar Cells, 2009, 93, 1167-1175.
52. J. H. Wu, Z. Lan, J. M. Lin, M. L. Huang, S. C. Hao, T. Sato and S. Yin, Advanced Materials, 2007, 19, 4006-4011.
53. C.-L. Chen, H. Teng and Y.-L. Lee, Advanced Materials, 2011, 23, 4199-4204.
54. P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi and M. Gratzel, Nat Mater, 2003, 2, 402-407.
55. G. Wang, X. Zhou, M. Li, J. Zhang, J. Kang, Y. Lin, S. Fang and X. Xiao, Materials Research Bulletin, 2004, 39, 2113-2118.
56. P. M. Ajayan, Chemical Reviews, 1999, 99, 1787-1800.
57. B. Mortazavi, M. Potschke and G. Cuniberti, Nanoscale, 2014, 6, 3344-3352.
58. M. M. J. Treacy, T. W. Ebbesen and J. M. Gibson, Nature, 1996, 381, 678-680.
59. E. M. Dannenberg, Rubber Chemistry and Technology, 1952, 25, 843-857.
60. P. M. Ajayan, O. Stephan, C. Colliex and D. Trauth, Science, 1994, 265, 1212-1214.
61. Y.-F. Chan, C.-C. Wang and C.-Y. Chen, Journal of Materials Chemistry A, 2013, 1, 5479-5486.
62. M. R. Karim, A. Islam, M. D. Akhtaruzzaman, L. Han and A. Al-Ahmari, Journal of Chemistry, 2013, 2013, 5.
63. R.-X. Dong, S.-Y. Shen, H.-W. Chen, C.-C. Wang, P.-T. Shih, C.-T. Liu, R. Vittal, J.-J. Lin and K.-C. Ho, Journal of Materials Chemistry A, 2013, 1, 8471-8478.
64. S.-Y. Shen, R.-X. Dong, P.-T. Shih, V. Ramamurthy, J.-J. Lin and K.-C. Ho, ACS Applied Materials & Interfaces, 2014, 6, 18489-18496.
65. Y.-C. Wang, K.-C. Huang, R.-X. Dong, C.-T. Liu, C.-C. Wang, K.-C. Ho and J.-J. Lin, Journal of Materials Chemistry, 2012, 22, 6982-6989.
66. W. Kubo, K. Murakoshi, T. Kitamura, S. Yoshida, M. Haruki, K. Hanabusa, H. Shirai, Y. Wada and S. Yanagida, J Phys Chem B, 2001, 105, 12809-12815.
67. R. Kawano and M. Watanabe, Chem Commun, 2003, DOI: 10.1039/b208388b, 330-331.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19324-
dc.description.abstract本論文分為兩大部分,第一部份是合成新型高分子型分散劑POE-segmented imide (POEM),經由傅立葉轉換紅外線光譜儀(Fourier transform infrared spectroscopy, FTIR)證實具有亞醯胺及胺官能基。此分散劑可分散碳黑、奈米碳管、石墨烯等碳材,並且以穿透式電子顯微鏡(Transmission electron microscopy, TEM)和可見光紫外光分光光譜儀(UV-VIS Spectophotometer)佐證其分散性。
第二部分是合成高分子彈性體Poly(oxyethylene)-segmented amide-imide (POE-PAI),其結構包含聚氧乙烯主鏈、醯胺、亞醯胺和分子間醯胺鍵等官能基,此彈性體能夠吸收電解液形成膠態電解質並應用於半固態染料敏化太陽能電池(Quasi-solid DSSC)中,吾人發現其吸取之電解液的量可占整體膠態電解液達80%以上,其光電轉換效率可達7.32%。吾人並進一步將以POEM分散過後的三種碳材進一步添加於POE-PAI彈性體中。由於碳材的優良導電性,電解液中的氧化還原對能夠更快速的傳遞,此結果能夠以彈性體的導離度(Ionic conductivity)和電化學交流阻抗分析(Electrochemical impedance spectra, EIS)佐證,以石墨烯改質過後的POE-PAI彈性體其效率可上升到7.96%,優於未改質前的彈性體。吾人更進一步以掃描式電子顯微鏡(Scanning electron microscopy, SEM)分析其表面特性,發現浸泡過電解液的彈性體表面會產生奈米等級通道,此通道能提供離子對傳遞。此外,隨著碳材添加的量增加,其表面型態也會隨之改變。
zh_TW
dc.description.abstractDifferent dimensional carbon materials, including multi-walled carbon nanotubes (MWCNT, one dimensional (1D)), graphene (two dimensional (2D)), and carbon black (zero dimensional (0D)), could be successively dispersed by an excellent home-made dispersant, namely poly(oxyethylene)-segmented imide (POE-segmented imide, POEM). The dispersibilities of the carbon materials in POEM were verified by UV-vis spectroscopy and transmission electron microscopy (TEM). The carbon materials (with the POEM) were then incorporated in an elastomer of poly(oxyethylene)-segmented amide-imide (POE-PAI), which was synthesized by the polymerization of poly(oxyethylene)-segmented diamine and 4,4-oxydiphthalic anhydride (ODPA). The carbon-incorporated polymer gels were used as quasi-solid-state electrolytes for dye-sensitized solar cells (DSSCs). The chemical structure of POE-PAI was characterized by Fourier transform infrared spectroscopy (FTIR). The DSSCs with graphene and MWCNT exhibited much higher power conversion efficiencies (η, 7.96% and 7.90%, respectively), compared to that of the DSSC with pristine POE-PAI as the polymer gel electrolyte (PGE, 7.32%); these enhanced η’s can be attributed to the higher ionic conductivities of the electrolytes with graphene and carbon nanotubes. Electrochemical impedance spectra and conductivity data are used to support these photovoltaic parameters. Furthermore, morphologies of the elastomers of these polymer gel electrolytes are found to play important roles in deciding the η’s of the pertinent DSSCs; these morphologies are examined through scanning electron microscope (SEM) images. The best power conversion efficiency (7.96%) obtained in this research is much better than most of the η’s obtained hitherto for quasi-solid state DSSCs.en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:53:45Z (GMT). No. of bitstreams: 1
ntu-105-R03549002-1.pdf: 1847373 bytes, checksum: ad8f8a7baeca0ba1c2e46149d059eec4 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents致謝 I
中文摘要 II
Abstract III
Index V
List of Figures VIII
List of Tables XI
List of Schemes XII
Chapter 1 Introduction 1
1.1 Nanomaterials 1
1.2 Carbon materials 3
1.2.1 Carbon black 3
1.2.2 Carbon nanotube (CNT) 4
1.2.3 Graphene 6
1.3 History and development of dispersion techniques 8
1.4 Solar cells 9
1.4.1 Background 9
1.4.2 The measured environment of solar cells 14
1.4.3 Photovoltaic parameters of DSSCs 17
1.4.4 Introduction of dye-sensitized solar cells (DSSCs) 21
1.5 Research motivation 24
Chapter 2 Experimental Section 27
2.1 Materials 27
2.2 Synthesis of POE-segmented-imide (POEM) 28
2.3 Synthesis of carbon material incorporated poly(oxyethylene)-segmented amide-imide(POE-PAI) copolymer 28
2.4 Preparation of the polymer gel electrolyte 29
2.5 Preparation of photo-electrode 29
2.6 Fabrication of the dye-sensitized solar cell (DSSC) 30
2.7 Instrumentation 31
Chapter 3 Result and Discussion 32
3.1 Synthesis of POE-segmented-imide (POEM) 32
3.2 Dispersion of carbon materials 34
3.3 Preparation of carbon incorporated copolymer of poly (oxyethylene)-segmented amide-imide (POE-PAI) 37
3.4 Influence of carbon material concentration on photovoltaic performance of PGE 44
3.5 Morphologies of the POE-PAI elastomer incorporated with the carbon materials 54
Chapter 4 Conclusion 60
Chapter 5 References 62
dc.language.isoen
dc.title高分子膠態電解質混成碳材於染敏太陽能電池應用zh_TW
dc.titlePerformance Enhancement of sp2 Carbon Incorporated Polymer Gel Electrolyte in Dye-sensitized Solar Cellen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.coadvisor何國川
dc.contributor.oralexamcommittee謝國煌,張信貞,王逸萍
dc.subject.keyword碳材,分散劑,聚亞醯胺,膠態電解質,半固態染料敏化太陽能電池,zh_TW
dc.subject.keywordCarbon material,Poly(oxyethylene)-segmented imide (POEM),Elastomer,Poly(oxyethylene)-segmented amide-imide (POE-PAI),Dye-sensitized solar cell (DSSC),en
dc.relation.page67
dc.identifier.doi10.6342/NTU201600859
dc.rights.note未授權
dc.date.accepted2016-07-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
1.8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved