Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19316
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉致為(Chee Wee Liu)
dc.contributor.authorChieh Loen
dc.contributor.author羅傑zh_TW
dc.date.accessioned2021-06-08T01:53:23Z-
dc.date.copyright2016-08-03
dc.date.issued2016
dc.date.submitted2016-07-19
dc.identifier.citation[1] S. H. K. Park, J. W. Kim, M. Ryu, I. Y. Eom, J. E. Pi, O. Kwon, E. Park, H. Oh, C. S. Hwang, and S. K. Lim, “High mobility oxide TFT for large area high resolution AMOLED,” Dig. Tech. Pap. - SID Int. Symp., vol. 44, no. 1, pp. 18–21, 2013.
[2] Y. G. Mo, M. Kim, and H. D. Kim, “Amorphous-oxide TFT backplane for large-sized AMOLED TVs,” Jsid, vol. 19, no. 1, pp. 16–20, 2011.
[3] J. Lee, D. Kim, D. Yang, S. Hong, K. Yoon, P. Hong, C. Jeong, H. Park, S. Y. Kim, S. K. Lim, S. S. Kim, K. Son, T. Kim, J. Kwon, and S. Lee, “World’s Largest (15-inch) XGA AMLCD Panel Using IGZO Oxide TFT,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp., vol. 39, pp. 625–628, 2008.
[4] Y. Kataoka, H. Imai, Y. Nakata, T. Daitoh, T. M. N. Kimura, T. Nakano, Y. Mizuno, T. Oketani, M. Takahashi, M. Tsubuku, H. Miyake, T. I. Y. Hirakata, J. Koyama, S. Yamazaki, J. Koezuka, and K. Okazaki, “Development of IGZO-TFT and creation of new devices using IGZO-TFT,” Dig. Tech. Pap. - SID Int. Symp., vol. 44, no. 1, pp. 771–774, 2013.
[5] A. Takagi, K. Nomura, H. Ohta, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, “Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO4,” Thin Solid Films, vol. 486, no. 1–2, pp. 38–41, 2005.
[6] H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, “High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering,” Appl. Phys. Lett., vol. 89, no. 11, p. 112123, 2006.
[7] T. Kamiya, K. Nomura, and H. Hosono, “Present status of amorphous In–Ga–Zn–O thin-film transistors,” Sci. Technol. Adv. Mater., vol. 11, no. 4, p. 044305, 2010.
[8] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors.,” Nature, vol. 432, no. 7016, pp. 488–492, 2004.
[9] J. S. Park, T. W. Kim, D. Stryakhilev, J. S. Lee, S. G. An, Y. S. Pyo, D. B. Lee, Y. G. Mo, D. U. Jin, and H. K. Chung, “Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin-film transistors,” Appl. Phys. Lett., vol. 95, no. 1, p. 013503, 2009.
[10] K. Myny, A. K. Tripathi, J. L. Van Der Steen, and B. Cobb, “Flexible thin-film NFC tags,” IEEE Commun. Mag., vol. 53, no. 10, pp. 182–189, 2015.
[11] X. Xiao, W. Deng, S. Chi, Y. Shao, X. He, L. Wang, and S. Zhang, “Effect of O2 flow rate during channel layer deposition on negative gate bias stress-induced Vth Shift of a-IGZO TFTs,” IEEE Trans. Electron Devices, vol. 60, no. 12, pp. 4159–4164, 2013.
[12] H.-S. Seo, J.-U. Bae, D.-H. Kim, Y. Park, C.-D. Kim, I. B. Kang, I.-J. Chung, J.-H. Choi, and J.-M. Myoung, “Reliable Bottom Gate Amorphous Indium–Gallium–Zinc Oxide Thin-Film Transistors with TiOx Passivation Layer,” Electrochem. Solid-State Lett., vol. 12, no. 9, p. H348, 2009.
[13] S. I. Oh, G. Choi, H. Hwang, W. Lu, and J. H. Jang, “Hydrogenated IGZO thin-film transistors using high-pressure hydrogen annealing,” IEEE Trans. Electron Devices, vol. 60, no. 8, pp. 2537–2541, 2013.
[14] H.-H. Hsieh, T. Kamiya, K. Nomura, H. Hosono, and C.-C. Wu, “Modeling of amorphous InGaZnO4 thin film transistors and their subgap density of states,” Appl. Phys. Lett., vol. 92, no. 13, p. 133503, 2008.
[15] T. Kamiya, K. Nomura, and H. Hosono, “Origins of High Mobility and Low Operation Voltage of Amorphous Oxide TFTs: Electronic Structure, Electron Transport, Defects and Doping,” J. Disp. Technol., vol. 5, no. 7, pp. 273–288, 2009.
[16] K. Nomura, T. Kamiya, and H. Hosono, “Effects of Diffusion of Hydrogen and Oxygen on Electrical Properties of Amorphous Oxide Semiconductor, In-Ga-Zn-O,” ECS J. Solid State Sci. Technol., vol. 2, no. 1, pp. P5–P8, 2013.
[17] H. Noh, J. Park, and K. J. Chang, “Effect of hydrogen incorporation on the negative bias illumination stress instability in amorphous In-Ga-Zn-O thin-film-transistors Effect of hydrogen incorporation on the negative bias illumination stress instability in amorphous In-Ga-Zn-O thin-film-transistors,” J. Appl. Phys., vol. 113, no. 1, p. 063712, 2013.
[18] Y. Hanyu, K. Domen, K. Nomura, H. Hiramatsu, H. Kumomi, H. Hosono, and T. Kamiya, “Hydrogen passivation of electron trap in amorphous In-Ga-Zn-O thin-film transistors Hydrogen passivation of electron trap in amorphous In-Ga-Zn-O thin-film transistors,” J. Appl. Phys., vol. 103, no. 202114, p. 202114, 2015.
[19] T. Toda, D. Wang, J. Jiang, M. P. Hung, and M. Furuta, “Quantitative Analysis of the Effect of Hydrogen Diffusion from Silicon Oxide Etch-Stopper Layer into Amorphous In-Ga-Zn-O on Thin-Film Transistor,” IEEE Trans. Electron Devices, vol. 61, no. 11, pp. 3762–3767, 2014.
[20] A. Janotti and C. G. Van de Walle, “Hydrogen multicentre bonds.,” Nat. Mater., vol. 6, no. 1, pp. 44–47, 2007.
[21] a. Suresh and J. F. Muth, “Bias stress stability of indium gallium zinc oxide channel based transparent thin film transistors,” Appl. Phys. Lett., vol. 92, no. 3, p. 033502, 2008.
[22] E. N. Cho, J. H. Kang, C. E. Kim, P. Moon, and I. Yun, “Analysis of bias stress instability in amorphous InGaZnO thin-film transistors,” IEEE Trans. Device Mater. Reliab., vol. 11, no. 1, pp. 112–117, 2011.
[23] Y. K. Moon, S. Lee, D. H. Kim, D. H. Lee, C. O. Jeong, and J. W. Park, “Application of DC magnetron sputtering to deposition of InGaZnO films for thin film transistor devices,” Jpn. J. Appl. Phys., vol. 48, no. 3, p. 031301, 2009.
[24] H. Oh, S. M. Yoon, M. K. Ryu, C. S. Hwang, S. Yang, and S. H. K. Park, “Photon-accelerated negative bias instability involving subgap states creation in amorphous In-Ga-Zn-O thin film transistor,” Appl. Phys. Lett., vol. 97, no. 18, p. 183502, 2010.
[25] T. C. Chen, T. C. Chang, C. T. Tsai, T. Y. Hsieh, S. C. Chen, C. S. Lin, M. C. Hung, C. H. Tu, J. J. Chang, and P. L. Chen, “Behaviors of InGaZnO thin film transistor under illuminated positive gate-bias stress,” Appl. Phys. Lett., vol. 97, no. 11, p. 112104, 2010.
[26] H. K. Noh, K. J. Chang, B. Ryu, and W. J. Lee, “Electronic structure of oxygen-vacancy defects in amorphous In-Ga-Zn-O semiconductors,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 84, no. 11, p. 115205, 2011.
[27] K. Takechi, M. Nakata, T. Eguchi, H. Yamaguchi, and S. Kaneko, “Comparison of ultraviolet photo-field effects between hydrogenated amorphous silicon and amorphous InGaZnO4 thin-film transistors,” Jpn. J. Appl. Phys., vol. 48, p. 010203, 2009.
[28] B. Ryu, H. K. Noh, E. A. Choi, and K. J. Chang, “O-vacancy as the origin of negative bias illumination stress instability in amorphous In-Ga-Zn-O thin film transistors,” Appl. Phys. Lett., vol. 97, no. 2, p. 022108, 2010.
[29] K. Nomura, T. Kamiya, E. Ikenaga, H. Yanagi, K. Kobayashi, and H. Hosono, “Depth analysis of subgap electronic states in amorphous oxide semiconductor, a-In-Ga-Zn-O, studied by hard x-ray photoelectron spectroscopy,” J. Appl. Phys., vol. 109, no. 7, p. 073726, 2011.
[30] K. Nomura, T. Kamiya, M. Hirano, and H. Hosono, “Origins of threshold voltage shifts in room-temperature deposited and annealed a-In-Ga-Zn-O thin-film transistors,” Appl. Phys. Lett., vol. 95, no. 1, p. 013502, 2009.
[31] K. H. Ji, J. I. Kim, H. Y. Jung, S. Y. Park, R. Choi, U. K. Kim, C. S. Hwang, D. Lee, H. Hwang, and J. K. Jeong, “Effect of high-pressure oxygen annealing on negative bias illumination stress-induced instability of InGaZnO thin film transistors,” Appl. Phys. Lett., vol. 98, no. 10, p. 103509, 2011.
[32] W. T. Chen, S. Y. Lo, S. C. Kao, H. W. Zan, C. C. Tsai, J. H. Lin, C. H. Fang, and C. C. Lee, “Oxygen-dependent instability and annealing/passivation effects in amorphous In-Ga-Zn-O thin-film transistors,” IEEE Electron Device Lett., vol. 32, no. 11, pp. 1552–1554, 2011.
[33] K. Watanabe, D. H. Lee, I. Sakaguchi, K. Nomura, T. Kamiya, H. Haneda, H. Hosono, and N. Ohashi, “Surface reactivity and oxygen migration in amorphous indium-gallium-zinc oxide films annealed in humid atmosphere,” Appl. Phys. Lett., vol. 103, no. 20, p. 201904, 2013.
[34] H. Q. Chiang, B. R. McFarlane, D. Hong, R. E. Presley, and J. F. Wager, “Processing effects on the stability of amorphous indium gallium zinc oxide thin-film transistors,” J. Non. Cryst. Solids, vol. 354, no. 19–25, pp. 2826–2830, 2008.
[35] M. J. Gadre and T. L. Alford, “Highest transmittance and high-mobility amorphous indium gallium zinc oxide films on flexible substrate by room-temperature deposition and post-deposition anneals,” Appl. Phys. Lett., vol. 99, no. 5, p. 051901, 2011.
[36] J. V Dalton and J. Drobek, “Structure and Sodium Migration in Silicon Nitride Films,” J. Electrochem. Soc. Solid State Sci., vol. 115, no. 8, pp. 865–868, 1968.
[37] B.-D. Choi, W.-S. Kim, M.-S. So, J.-B. Koo, R. Kakkad, Y.-G. Mo, and S.-C. Kim, “Stability Enhancement of Polysilicon Thin-Film Transistors Using Stacked Plasma-Enhanced Chemical Vapor Deposited SiO2/SiNxGate Dielectric,” Jpn. J. Appl. Phys., vol. 44, no. 9A, pp. 6417–6420, 2005.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19316-
dc.description.abstract本論文對不同通道長度 (12微米 - 4微米),但相同通道寬度及層間介電層長度之上閘極式非晶相銦鎵鋅氧化物(a-IGZO)薄膜電晶體之電性及穩定度進行了探討。發現隨著通道長度之縮減,a-IGZO電晶體之電性及穩定度有明顯的改善。此乃因層間介電層之成長採用高的矽甲烷(SiH4)流量,導致氫由層間介電層擴散至通道。因短通道電晶體之通道擁有較大比例之氫摻雜區域且已知氫摻雜進入a-IGZO可鈍化缺陷且貢獻自由電子,所以較短通道電晶體表現出較好之電性及穩定度。通道長度4微米之電晶體擁有高載子傳導率(26 cm2/V-s)及小的次臨界擺幅(155 mV/dec)和電磁滯效應(39 mV)。
對於元件穩定度測試,探討由於應力偏壓導致元件失真的原因及物理機制。對於正偏壓應力測試,電子被捕獲於閘極氧化層和shallow states內導致臨界電壓之正偏。反之對於負偏壓之應力測試,僅有少數之電洞被捕獲於閘極氧化層內導致臨界電壓些微之負偏。另外在照光負偏壓測試之後,臨界電壓因在通道中被離子化之deep states而負偏。
負偏壓穩定度測試通常會導致臨界電壓之負偏。 a-IGZO沉積之後以400 oC 熱退火之蝕刻阻擋層式(etching-stop layer type)電晶體在負偏壓穩定度測試後卻發現臨界電壓正偏之現象。此乃因熱退火環境下,鈉離子由鉬金屬之閘極摻雜進入閘極氧化層之影響。在負偏壓之下,鈉離子朝向閘極移動,鈉離子與閘極之間距離縮短,因此在鈉離子與閘極之間的壓降縮小導致相對應之臨界電壓正偏現象。於閘極及氧化矽層間插入氮化矽層,可抑制鈉離子移動,因此電晶體之臨界電壓於負偏壓應力測試之後表現正常負偏現象。
zh_TW
dc.description.abstractThe electrical characterization and reliability of top-gate a-IGZO thin-film transistors (TFTs) with various channel length (12 m - 4 m) but fixed channel width and inter layer dielectric (ILD) length are discussed. As channel length decreases, the electrical properties and reliability are improved. This is due to the fact that the hydrogen atoms from ILD that are deposited with high SiH4 flow rate diffuse into the region at channel edge. Short channel devices have large proportion of high hydrogen incorporated region at channel edge. It is reported that the hydrogen incorporated in a-IGZO acts as donors and passivate defects. This leads that short channel devices show better performance. The devices with channel length of 4 m exhibit a high mobility of 26 cm2/V-s, a SS of 155 mV/dec and a hysteresis of 39 mV.
The origins of instability of threshold voltage (VT) shift after reliability test are discussed. After positive bias stress (PBS), electrons are trapped into shallow states or trapped into gate insulator causing a positive VT shift. On the other hand, after negative bias stress (NBS), only a few inverted holes are trapped into gate insulator leading to a slightly negative VT shift. After the negative bias illumination stress (NBIS), ionized deep states in the channel resulted in a negative VT shift.
The NBS normally yields a negative VT shift of the TFTs. However, a positive VT shift after NBS of the device with the post IGZO deposition annealing at 400 oC is observed in etching-stop layer type a-IGZO TFTs. The Na+ incorporation from Mo gate into the gate insulator after 400 oC annealing is responsible for this abnormal VT shift. The movement of Na+ ions toward the gate electrode by the negative gate bias decreases the distance between the gate electrode and the Na+ ions. Therefore, the voltage drop between the gate electrode and the Na+ ions reduces, and a corresponding positive VT shift is observed. Inserting a SiNx layer between the SiOx gate insulator and the Mo gate electrode can reduce the Na+ mobility, and thus resumes a normal negative VT shift.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:53:23Z (GMT). No. of bitstreams: 1
ntu-105-R03943073-1.pdf: 6297105 bytes, checksum: 4c461720ba44b00b5d338c9675db70f9 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontentsList of figures………………………………………………………………………..ix
Chapter 1 Introduction
1.1 Motivation…………………………………………………………………….……..1
1.2 Thesis organization………………………………………………………………..…2
Chapter 2 Material properties and channel length-dependent hydrogen passivation effects on a-IGZO TFTs
2.1 Introduction………………………………………………………………………….4
2.2 Conduction mechanism of a-IGZO………………………………………………….5
2.3 Density of states of a-IGZO………………………………………………………….9
2.4 Operation mode of a-IGZO TFTs…………………………………………………..11
2.5 The influence of defect states on a-IGZO TFTs……………………………………15
2.6 Device fabrication of top-gate a-IGZO TFTs………………………………………20
2.7 Channel length-dependent analysis of top-gate a-IGZO TFTs………..…….….…..21
2.8 Summary……………………………………………………………………………28
Chapter 3 Channel length-dependent reliability improvement of a-IGZO TFT
3.1 Introduction…………………………………………………………………….…..29
3.2 Positive bias stress of top-gate a-IGZO TFTs…………..………………..…..…….30
3.3 Negative bias stress of top-gate a-IGZO TFTs……………………………….……34
3.4 Negative bias illumination stress of top-gate a-IGZO TFTs….……………....……38
3.5 Summary……………………………………………………………………………45
Chapter 4 Abnormal threshold voltage shift of a-IGZO TFTs due to mobile sodium in gate insulators
4.1 Introduction…………………………………………………………………..…….46
4.2 Device fabrication of ESL type a-IGZO TFTs……………………………………..47
4.3 Negative bias stress without positive pre-bias of ESL type a-IGZO TFTs...……....48
4.4 Negative bias stress with positive pre-bias of ESL type a-IGZO TFTs.………...…51
4.5 Summary……………………………………………………………………………57
Chapter 5 Summary and future work
5.1 Summary……………………………………………………………………………58
5.2 Future work…………………………………………………………………………59
Reference………………………………………………………………....60
dc.language.isoen
dc.title高載子遷移率及穩定度改善之非晶相銦鎵鋅氧化物薄膜電晶體zh_TW
dc.titleHigh Mobility and Enhanced Reliability Amorphous Indium-Gallium-Zinc Oxide Thin-Film Transistorsen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.coadvisor楊英杰(Ying-Jay Yang)
dc.contributor.oralexamcommittee林中一(Chung-Yi Lin),林鴻志(Horng-Chih Lin),張守進(Shoou-Jinn Chang)
dc.subject.keyword薄膜電晶體,非晶相銦鎵鋅氧化物,氫摻雜,通道長度相關性,穩定度分析,異常臨界電壓之偏移,移動電荷,zh_TW
dc.subject.keywordThin-film transistors,Amorphous InGaZnO,Hydrogen incorporation,Channel length-dependent effects,Reliability,Abnormal VT shift,Mobile charge,en
dc.relation.page63
dc.identifier.doi10.6342/NTU201601054
dc.rights.note未授權
dc.date.accepted2016-07-19
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
6.15 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved