Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19315
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王立義(Leeyih Wang)
dc.contributor.authorYi-Chun Yehen
dc.contributor.author葉怡君zh_TW
dc.date.accessioned2021-06-08T01:53:20Z-
dc.date.copyright2016-07-26
dc.date.issued2016
dc.date.submitted2016-07-18
dc.identifier.citation[1] 美國國家再生能源實驗室, NREL, 2016, Best Research-Cell Efficiens
[2] K. M. Coakley and M. D. McGehee, Chem. Mater., 2004, 16 (23), 4533–4542.
[3] S. N. Chen, A. J. Heeger, Z.Kiss, A. G. MacDiarmid, S. C. Gau, D.L. Peebles, Appl. Phys. Lett., 1980, 36, 96–98.
[4] S. Glenis, G. Tourillon, F.Garnier, Thin Solid Films, 1986, 139, 221–223.
[5] R. N. Marks, J. J. M. Halls, D. D. C. Bradley, R. H. Friend, A. B. Holmes, J. Phys. Condens. Matter, 1994, 6, 1379–1394.
[6] C.W. Tang, Appl. Phys. Lett., 1986, 48, 183–185.
[7] N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, F. Wudl, Appl. phys. lett., 1993, 62, 585–587.
[8] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science, 1995, 270, 1789–1791.
[9] S. S. Sun, Solar Energy Materials and Solar Cells, 2003, 79, 2, 257–264
[10] Z. Xu, L. M. Chen, G. Yang, C. H. Huang, J. Hou, Y. Wu, G. Li, C. S. Hus, Y. Yang, Adv. Funct. Mater., 2009, 19, 1227–1234.
[11] J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C. C. Chen, J. Gao, G. Li, Y. Yang, Nat. Commun., 2013, 4, 1446–1455.
[12] Y. J. Cheng, S. H. Yang, C. S. Hsu, Chem Rev., 2009, 109, 5868–5923.
[13] G. Li, R. Zhu, Y. Yang, Nature Photon., 2012, 6, 153–161.
[14] H. J. Son, F. He, B. Carsten, L. Yu, J. Mater. Chem., 2011, 21, 18934–18945.
[15] E. R. Bittner, J. G. S. Ramon, S. Karabunarliev, J. Chem. Phys., 2005, 122, 214719.
[16] C. J. Brabec, C. Winder, N. S. Sariciftic, J. C. Hummelen, A. Dhanabalan, P. A. van Hal, R. A. J. Janssen, Adv. Funct Mater., 2002, 12, 709–712.
[17] P. L. T. Boudreault, A. Najari, M. Leclerc, Chem. Mater., 2010, 23, 456–469.
[18] H. L. Yip, A. K. Y. Jen, Energy Environ. Sci., 2012, 5, 5994–6011
[19] A. Moliton, J. M. Nunzi, Polym. Int., 2006, 55, 6, 583–600.
[20] H. Zhou, L. Yang, W. You, Macromolecules, 2012, 45, 607−632.
[21] E. M. Genies, New J. Chem., 1989.
[22] A. F. Diaz, Chem. Scr., 1981, 17, 142.
[23] Y. S. Lee, M. Kertesz, J. Chem. Phys., 1988, 88, 2609.
[24] J. Roncali, Chem. Rev., 1997, 97, 173.
[25] J. H. Hou, C. H. Yang, C Heab, Y. F. Li, Chem. Commun., 2006, 871–873.
[26] J. H. Hou, Z. A. Tan, Y. Yan, Y. J. He, C. H. Yang, Y. F. Li, J. Am. Chem. Soc., 2006, 128, 4911–4916.
[27] M. X. Wan, G. G. Sang, Y. P. Zou, S. T. Tan, Y. F. Li, J. Appl. Polym. Science, 2009, 113, 1415–1421.
[28] Z. G. Zhang, S.Y. Zhang, J. Min, C. H. Chui, J. Zhang, M. J. Zhang, Y. F. Li, Macromolecules, 2012, 45, 113−118.
[29] C. H. Duan, K. S. Chen, F. Huang, H. L. Yip, S. J. Liu, J. Z., A. K. Y. Jen, Y. Cao, Chem. Mater., 2010, 22, 6444–6452.
[30] L. J. Huo, J. H. Hou, S. Q. Zhang, H. Y. Chen, Y. Yang, Angew. Chem. Int. Ed., 2010, 49, 1500–1503.
[31] K. Lu, J. Fang, H. Yan, X. W. Zhu, Y. P. Yi, Z. X. Wei, Organic Electronics, 2013, 14, 2652–2661.
[32] L. Ye, S. Q. Zhang, L. J. Huo, M. J. Zhang, J. Hui Hou, Acc. Chem. Res., 2014, 47, 1595−1603.
[33] H. F. Yao, W. C. Zhao, Z. Zheng, Y. Cui, J. Q. Zhang, Z. X. Wei, J. H Hou, J. Mater. Chem. A, 2016, 4, 1708–1713.
[34] H. S. Chung, W. H. Lee, C. E. Song, Y. Shin, J. G. Kim, S. K. Lee, W. S. Shin, S. J. Moon, I. N. Kang, Macromolecules, 2014, 47, 97−105.
[35] H. Bronstein, Z. Chen, R. S. Ashraf, W. Zhang, J. Du, J. R. Durrant, P. S. Tuladhar, K. Song, S. E. Watkins, Y. Geerts, M. M. Wienk, R. A. J. Janssen, T. Anthopoulos, H. Sirringhaus, M. Heeney, and I. McCulloch, J. Am. Chem. Soc., 2011, 133, 3272.
[36] A. Iqbal, M. Jost, R. Kirchmayr, J. Pfenninger, A. Rochat, and O. Wallquist, Bull. Soc. Chim. Belg., 1988, 97, 615.
[37] L. Bürgi, M. Turbiez, R. Pfeiffer, F. Bienewald, H.-J. Kirner, and C. Winnewisser, Adv. Mater., 2008, 20, 2217.
[38] C. H. Woo, P. M. Beaujuge, T. W. Holcombe, O. P. Lee, and J. M. J. Freìchet, J. Am. Chem. Soc., 2010, 132, 15547.
[39] B. Carsten, J. M. Szarko, L. Lu, H. J. Son, F. He, Y. Y. Botros, L. X. Chen, and L. Yu, Macromolecules, 2012, 45, 6390.
[40] J. C. Bijleveld, A. P. Zoombelt, S. G. J. Mathijssen, M. M. Wienk, M. Turbiez, D. M. de Leeuw, R. A. J. Janssen, J. Am. Chem. Soc., 2009, 131, 16616–16617.
[41] A. T. Yiu, P. M. Beaujuge, O. P. Lee, C. H. Woo, M. F. Toney, J. M. J. Fréchet, J. Am. Chem. Soc., 2012, 134, 2180–2185.
[42] H. G. Kim, B. Kang, H. Ko, J. Lee, J. Shin, K. Cho, Chem. Mater., 2015, 27, 829–838
[43] M. Grzybowski, E. Glodkowska-Mrowka, T. Stoklosa, D. T. Gryko, Org. Lett., 2012, 14, 2670–2673.
[44] B. Chen, Y. Yang, P. Cheng, X. G. Chen, X. W. Zhan, J. G. Qina, J. Mater. Chem. A, 2015, 3, 6894–6900.
[45] D. Milstein, J. K. Stille, J. Am. Chem. Soc., 1978, 100, 3636–3638.
[46] D. Milstein, J. K. Stille, J. Am. Chem. Soc., 1979, 101, 4992–4998.
[47] P. Espinet, A. M. Echavarren, Angew. Chem. Int. Ed., 2004, 43, 4704 – 4734.
[48] C. Cordovilla, C. Bartolomé, J. M. Martínez-Ilarduya, P. Espinet, ACS Catal., 2015, 5, 3040−3053.
[49] https://en.wikipedia.org/wiki/Stille_reaction
[50] G. Wittig, U. Schöllkopf, Chem. Ber., 1954, 87, 1318–1330.
[51] G. Wittig, W. Haag, Chem. Ber., 1955, 88, 1654–166.
[52] https://en.wikipedia.org/wiki/Wittig_reaction
[53] L. Claisen, O. Lowman, Ber. Dtsch. Chem. Ges., 1887, 20, 651–654.
[54] http://www.name-reaction.com/claisen-condensation
[55] W. Dieckmann, Ber. Dtsch. Chem. Ges., 1894, 27, 102–103.
[56] H. Stobbe, Ber. Dtsch. Chem. Ges., 1893, 26, 2312-2319.
[57] H. Stobbe, Justus Liebigs Annalen der Chemie, 1899, 308, 89–114.
[58] C. Pomeranz, Monatshefte für Chemie und verwandte Teile anderer Wissenschaften, 1893, 14, 116-119.
[59] Paul Fritsch, Berichte der deutschen chemischen Gesellschaft, 1893, 26, 419–422.
[60] Alkaloide by Manfred Hesse. Weinheim: Wiley-VHC. (2000)
[61] Name reactions : a collection of detailed reaction mechanisms by J. Jack Li. (2006)
[62] M. Grzybowski, D. T. Gryko, Adv. Optical Mater., 2015, 3, 280–320.
[63] https://en.wikipedia.org/wiki/Pomeranz%E2%80%93Fritsch_reaction
[64] Spectroscopic Methods in Organic Chemistry by D. H. Williams, I. Fleming. (1989)
[65] 蕭全佑:國立台灣大學高分子科學與工程學研究所博士論文. 2014.
[66] S. N. Habisreutinger, L. Schmidt-Mende, J. K. Stolarczyk, Angew. Chem. Int. Ed., 2013, 52, 7372-7408.
[67] X. Li, J. Wen, J. Low, Y. Fang, J. Yu, Sci. China Mater., 2014, 57, 70-100.
[68] W. G. Tu, Y. Zhou, Z. G. Zou, Adv. Mater., 2014, 26, 4607–4626.
[69] D. L. Ashford, M. K. Gish, A. K. Vannucci, M. K. Brennaman, J. L. Templeton, J. M. Papanikolas, T. J. Meyer, Chem. Rev., 2015, 115, 13006-13049.
[70] J. Low, J. Yu, W. Ho, J. Phys. Chem. Lett., 2015, 6, 4244-4251.
[71] M. Q. Yang, Y. J. Xu, Chem. Chem. Phys., 2013, 15, 19102-19118.
[72] S. Das, W. M. A. Wan Daud, Renewable Sustainable Energy Rev., 2014, 39, 765-805.
[73] D. Finkelstein-Shapiro, S. H. Petrosko, N. M. Dimitrijevic, D. Gosztola, K. A. Gray, T. Rajh, P. Tarakeshwar, V. Mujica, J. Phys. Chem. Lett., 2013, 4, 475-479.
[74] J. Low, J. Yu, W. Ho, J. Phys. Chem. Lett., 2015, 6, 4244-4251.
[75] D. Chen, H. Zhang, Y. Liu, J. Li, Energy Environ. Sci., 2013, 6, 1362-1387.
[76] Y. Tang, X. Hu, C. Liu, Phys. Chem. Chem. Phys., 2014, 16, 25321-25329.
[77] H.-C. Hsu, I. Shown, H. Y. Wei, Y. C. Chang, H. Y. Du, Y. G. Lin, C. A. Tseng, C. H.Wang, L. C. Chen, Y. C. Lin, K. H. Chen, Nanoscale, 2013, 5, 262-268.
[78] I. Shown, H. C. Hsu, Y. C. Chang, C. H. Lin, P. K. Roy, A. Ganguly, C. H. Wang, J. K. Chang, C. I. Wu, L. C. Chen, K. H. Chen, Nano Lett., 2014, 14, 6097-6103.
[79] P. Kumar, B. Sain, S. L. Jain, J. Mater. Chem. A, 2014, 2, 11246-11253.
[80] 許新城:國立台灣科技大學材料科學與工程學系研究所博士論文. 2014.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19315-
dc.description.abstract本研究主要以具有2-octyldodecyl碳鏈之三噻吩作為共軛側鏈,並於主鏈導入雙噻吩或含氮雜環之拉電子基團,2,1,3-benzothiadiazole (BTD)及新型π-expanded DPP (eDPP)雙噻吩,成功地合成出一系列高溶解度之二維共軛高分子,分別命名為OCP01、OCP02和OCP03,並分析探討它們的結晶性、光學和電化學性質與分子結構的相關性。紫外可見光譜及循環伏安法測量顯示,引入BTD與eDPP單元至分子主鏈,皆能促使吸收光譜有效地紅位移,並降低能隙,尤其是新型的eDPP單體,其特殊的六稠環烴(fused ring)結構,使得OCP03展現寬廣吸收與最小能隙。當主鏈存在BTD單元時,可增強450~650 nm的吸收區域,OCP02光學能隙下降為1.65 eV;而當主鏈引入eDPP單元時,可增加600~800 nm的吸收範圍,OCP03展現1.45 eV的窄能隙。XRD實驗證實,將BTD插入主鏈中,導致結晶性略微下降,然而具高平面性的eDPP則可有效增加分子鏈的有序堆疊,而且熱退火處理皆可進一步幫助側鏈與主鏈的規則性排列,有效提升結晶性質。另外,我們將含2,3-didecylthienyl側鏈之benzodithiophene (BDT)單元作為推電子基團,透過Sille coupling方法與eDPP進行共聚合,生成二維共軛高分子OCP04,其在長波長600~900 nm有寬廣吸收,光學能隙為1.52 eV。
此外,本研究將所合成之二維共軛高分子,OCP01、OCP02、OCP03和OCP04,初步應用在光催化二氧化碳還原反應中,各別以1%的高分子混摻於氧化石墨烯(graphene oxide, GO)形成光催化劑系統。結果顯示加入二維共軛高分子作為有機敏化劑,皆能有效提升二氧化碳還原為乙醛與甲醇的產量,特別是1% OCP04/GO系統,其乙醛生成量比起單純的GO系統要高出約5倍。
zh_TW
dc.description.abstractIn this study, a series of highly soluble two-dimensional conjugated copolymers with 2-octyldodecyl-bearing terthiophene-vinylene group as conjugated side chains were designed and synthesized successfully. All intermediates and the resulting copolymers were structurally characterized by nuclear magnetic resonance (NMR) spectroscopy, elemental analysis (EA) and mass spectrometry. Moreover, gel permeation chromatography (GPC), ultraviolet-visible spectrometer (UV-vis), X-ray diffractometer (XRD), photoelectron spectroscopy in air (PESA) and cyclic voltammetry (CV) were employed to determine their molecular weight characteristics, light absorption properties, crystallinity and energy levels, respectively. As expected, the introduction of electron-deficient nitrogen-containing heterocyclic rings, 2,1,3-benzothiadiazole (BTD) and newπ-expanded DPP (eDPP), into the polymer backbone effectively broadens the absorption spectrum and lowers both the HOMO and LUMO levels, leading to narrow bandgaps. More importantly, this novel eDPP fused ring considerably enhances the crystallinity of the copolymers.
In addition, these new two-dimensional conjugated polymers were blended with graphene oxide (GO) to generate catalytic systems for CO2 photo-reduction. The incorporation of 1 wt% of these polymers into GO as sensitizer substantially increases the reaction rate of the photocatalytic reduction of CO2 into methanol and acetaldehyde. Especially, the production rate of acetaldehyde of the OCP04/GO system is determined to be about 5 times higher than that of the pristine GO system.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:53:20Z (GMT). No. of bitstreams: 1
ntu-105-R03549006-1.pdf: 9986811 bytes, checksum: 808dc03486a12790714fb805a28dc381 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents目 錄 I
圖 目 錄 V
表 目 錄 X
單體3ODT-M、eDPP、BT合成路徑 XI
高分子OCP01、OCP02、OCP03合成路徑 XII
高分子OCP04合成路徑 XIII
Abstract XIV
摘要 XV
第一章、緒論 1
1-1 前言 1
1-2 有機太陽能電池的種類 2
1-3 高分子太陽能電池結構發展 3
1-4 有機太陽能電池的工作原理 5
1-5 太陽能電池的元件參數 6
1-5-1 光電轉換效率 6
1-5-2 外部量子轉換效率 8
1-5-3 串聯電阻與並聯電阻 8
1-6 高分子太陽能電池材料介紹 9
1-6-1 理想高分子材料之特性 9
1-6-2 高分子結構與能隙的設計 10
1-7 文獻回顧 13
1-7-1 二維共軛高分子 13
1-7-2 含雜環Diketopyrrolopyrrole (DPP)之高分子 17
1-8 實驗動機與設計 22
1-8-3 提升溶解度 22
1-8-3 改變acceptor單元 23
第二章、實驗 24
2-1 化學試劑 24
2-2 實驗儀器 27
2-3 合成步驟 32
2-3-1 化合物1 (2,5-dibromo-3-methylthiophene) 合成 32
2-3-2 化合物2 (2,5-dibromo-3-(bromomethyl)thiophene) 合成 33
2-3-3 化合物3 (Diisopropyl ((2,5-dibromothiophene-3-yl)methyl)phosphonate) 合成 34
2-3-4 化合物4 (2,5-dibromothiophene-3-carbaldehyde) 合成 35
2-3-5 化合物5 (2-n-octyldodecyl bromide) 合成 36
2-3-6 化合物6 (3-(2-octyldodecyl)thiophene) 合成 37
2-3-7 化合物7 (Tributyl(4-(2-octyldodecyl)thiophene-2-yl)stannane) 合成 38
2-3-8 化合物8 (4,4’’-bis(2-octyldodecyl)-[2,2’:5’,2’’-terthiophene]-3’-carbaldehyde) 合成 39
2-3-9 化合物9 (3ODT-M) 合成 40
2-3-10 化合物10 (2,2’-bithiophene) 合成 41
2-3-11 化合物11 (5,5-bis(trimethylstannyl)-2,2’-bithiophene) 合成 42
2-3-12 化合物12 (Thiophen-2-carbonitrile) 合成 43
2-3-13 化合物13 (DPPNH) 合成 44
2-3-14 化合物14 (DPPNNR) 合成 45
2-3-15 化合物15 (dibromo-DPPNNR) 合成 46
2-3-16 化合物16 (eDPP) 合成 47
2-3-17 化合物17 (2pi-eDPP) 合成 48
2-3-18 OCP01聚合 49
2-3-19 OCP02-BTD20%聚合 50
2-3-20 OCP02-BTD33%聚合 51
2-3-21 OCP03-eDPP13%聚合 52
2-3-22 OCP03-eDPP15%聚合 53
2-3-23 OCP04聚合 54
第三章、結果與討論 55
3-1 結構合成 55
3-2 合成反應研究 58
3-3 單體之核磁共振圖譜分析 62
3-4 高分子聚合分析 65
3-5 高分子X光繞射圖譜 67
3-6 高分子光學性質 70
3-7 高分子能階分析 76
3-8 高分子在光催化二氧化碳氧化還原之應用 82
3-8-1 光催化二氧化碳還原之簡介 82
3-8-2 實驗設計與步驟 85
3-8-3 光催化效率之結果與討論 86
3-8-3-1 高分子之微胞粒徑 86
3-8-3-2 高分子之能階與吸收圖譜 88
3-8-3-3 光催化二氧化碳還原反應之產量 89
第四章、結論 92
參考文獻 93
附錄 98
1H and 13C NMR spectrum 98
單體質譜圖 128
dc.language.isozh-TW
dc.title二維共軛結構噻吩衍生高分子之合成與應用zh_TW
dc.titleSynthesis and Application of Thiophene-Derived Two-Dimensional Conjugated Polymersen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林金福(King-Fu Lin),鄭如忠(Ru-Jong Jeng),郭昌恕(Changshu Kuo)
dc.subject.keyword二維共軛高分子,共軛高分子合成,光催化二氧化碳還原反應,有機敏化劑,zh_TW
dc.subject.keywordtwo-dimensional conjugated polymers,polymer synthesis,photocatalytic carbon dioxide reduction,organic sensitizers,en
dc.relation.page130
dc.identifier.doi10.6342/NTU201600971
dc.rights.note未授權
dc.date.accepted2016-07-19
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
9.75 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved