請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19310完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 阮雪芬(Hsueh-Fen Juan) | |
| dc.contributor.author | Wen-Chi Lee | en |
| dc.contributor.author | 李文琦 | zh_TW |
| dc.date.accessioned | 2021-06-08T01:53:06Z | - |
| dc.date.copyright | 2020-08-24 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2020-08-19 | |
| dc.identifier.citation | 1. Janoueix-Lerosey, I., Schleiermacher, G. Delattre, O. Molecular pathogenesis of peripheral neuroblastic tumors. Oncogene 29, 1566–1579 (2010). 2. London, W. B. et al. Evidence for an age cutoff greater than 365 days for neuroblastoma risk group stratification in the Children’s Oncology Group. J. Clin. Oncol. 23, 6459–65 (2005). 3. Jiang, M., Stanke, J. Lahti, J. M. The Connections Between Neural Crest Development and Neuroblastoma. Curr. Top. Dev. Biol. 94, 77–127 (2011). 4. Cheung, N.-K.V. Dyer, M. A. Neuroblastoma: developmental biology, cancer genomics and immunotherapy. Nat. Rev. Cancer 13, 397–411 (2013). 5. Friedman, G. K. Castleberry, R. P. Changing Trends of Research and Treatment in Infant Neuroblastoma. Pediatr Blood Cancer 49, 1060–1065 (2007). 6. Evans, A. E., D’Angio, G. J. Randolph, J. A proposed staging for children with neuroblastoma.Children’s cancer study group A. Cancer 27, 374–378 (1971). 7. Janoueix-Lerosey, I. et al. Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature 455, 967–970 (2008). 8. Thompson, D. et al. Identification of patient subgroups with markedly disparate rates of MYCN amplification in neuroblastoma: A report from the International Neuroblastoma Risk Group project. Cancer 122, 935–945 (2016). 9. DiMasi, J. A., Hansen, R. W. Grabowski, H. G. The price of innovation: new estimates of drug development costs. J. Health Econ. 22, 151–185 (2003). 10. Dudley, J. T. et al. Computational repositioning of the anticonvulsant topiramate for inflammatory bowel disease. Sci. Transl. Med. 3, 96ra76 (2011). 11. Li, Y. et al. Multi-targeted therapy of cancer by niclosamide: A new application for an old drug. Cancer Lett. 349, 8–14 (2014). 12. Chen, W., Mook, R. A., Premont, R. T. Wang, J. Niclosamide: Beyond an antihelminthic drug. Cell. Signal. 41, 89–96 (2018). 13. Andrews, P., Thyssen, J. Lorke, D. The biology and toxicology of molluscicides, bayluscide. Pharmacol. Ther. 19, 245–295 (1982). 14. PEARSON, R. D. HEWLETT, E. L. Niclosamide Therapy for Tapeworm Infections. Ann. Intern. Med. 102, 550 (1985). 15. Xu, M. et al. Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen. Nat. Med. 22, 1101–1107 (2016). 16. Tao, H., Zhang, Y., Zeng, X., Shulman, G. I. Jin, S. Niclosamide ethanolamine–induced mild mitochondrial uncoupling improves diabetic symptoms in mice. Nat. Med. 20, 1263–1269 (2014). 17. Pan, J.-X., Ding, K. Wang, C.-Y. Niclosamide, an old antihelminthic agent, demonstrates antitumor activity by blocking multiple signaling pathways of cancer stem cells. Chin. J. Cancer 31, 178–84 (2012). 18. Fonseca, B. D. et al. Structure-activity analysis of niclosamide reveals potential role for cytoplasmic pH in control of mammalian target of rapamycin complex 1 (mTORC1) signaling. J. Biol. Chem. 287, 17530–45 (2012). 19. Balgi, A. D. et al. Screen for Chemical Modulators of Autophagy Reveals Novel Therapeutic Inhibitors of mTORC1 Signaling. PLoS One 4, e7124 (2009). 20. Wang, A.-M. et al. The autonomous notch signal pathway is activated by baicalin and baicalein but is suppressed by niclosamide in K562 cells. J. Cell. Biochem. 106, 682–692 (2009). 21. Jin, Y. et al. Antineoplastic mechanisms of niclosamide in acute myelogenous leukemia stem cells: inactivation of the NF-kappaB pathway and generation of reactive oxygen species. Cancer Res. 70, 2516–27 (2010). 22. Ren, X. et al. Identification of Niclosamide as a New Small-Molecule Inhibitor of the STAT3 Signaling Pathway. ACS Med. Chem. Lett. 1, 454–459 (2010). 23. Chen, M. et al. The Anti-Helminthic Niclosamide Inhibits Wnt/Frizzled1 Signaling. Biochemistry 48, 10267–10274 (2009). 24. Arend, R. C. et al. Inhibition of Wnt/β-catenin pathway by niclosamide: A therapeutic target for ovarian cancer. Gynecol. Oncol. 134, 112–120 (2014). 25. Kadri, H., Lambourne, O. A. Mehellou, Y. Niclosamide, a drug with many (re)purposes. ChemMedChem (2018). doi:10.1002/cmdc.201800100 26. Pandey, A. Mann, M. Proteomics to study genes and genomes. Nature 405, 837–846 (2000). 27. Wilkins, M. R. et al. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol. Genet. Eng. Rev. 13, 19–50 (1996). 28. Nesvizhskii, A. I. Aebersold, R. Interpretation of shotgun proteomic data: the protein inference problem. Mol. Cell. Proteomics 4, 1419–40 (2005). 29. Cox, J. Mann, M. Quantitative, High-Resolution Proteomics for Data-Driven Systems Biology. Annu. Rev. Biochem. 80, 273–299 (2011). 30. Hennrich, M. L., Mohammed, S., Altelaar, A. F. M. Heck, A. J. R. Dimethyl Isotope Labeling Assisted De Novo Peptide Sequencing. J. Am. Soc. Mass Spectrom. 21, 1957–1965 (2010). 31. Hsu, J.-L. Chen, S.-H. Stable isotope dimethyl labelling for quantitative proteomics and beyond. Philos. Trans. A. Math. Phys. Eng. Sci. 374, (2016). 32. Boersema, P. J., Raijmakers, R., Lemeer, S., Mohammed, S. Heck, A. J. R. Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat. Protoc. 4, 484–494 (2009). 33. Han, C.-L. et al. A multiplexed quantitative strategy for membrane proteomics: opportunities for mining therapeutic targets for autosomal dominant polycystic kidney disease. Mol. Cell. Proteomics 7, 1983–97 (2008). 34. Rappsilber, J., Mann, M. Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906 (2007). 35. Hu, C.-W. et al. Temporal Phosphoproteome Dynamics Induced by an ATP Synthase Inhibitor Citreoviridin. Mol. Cell. Proteomics 14, 3284–3298 (2015). 36. Cox, J. Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008). 37. Aebersold, R. Mann, M. Mass-spectrometric exploration of proteome structure and function. Nature 537, 347–355 (2016). 38. Mortensen, P. et al. MSQuant, an Open Source Platform for Mass Spectrometry-Based Quantitative Proteomics. J. Proteome Res. 9, 393–403 (2010). 39. Cox, J. et al. Andromeda: A Peptide Search Engine Integrated into the MaxQuant Environment. J. Proteome Res. 10, 1794–1805 (2011). 40. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102, 15545–50 (2005). 41. Morton, C. L. Houghton, P. J. Establishment of human tumor xenografts in immunodeficient mice. Nat. Protoc. 2, 247–250 (2007). 42. Cohn, S. L. et al. The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report. J. Clin. Oncol. 27, 289–97 (2009). 43. Maris, J. M. Recent Advances in Neuroblastoma. N. Engl. J. Med. 362, 2202–2211 (2010). 44. Mueller, S. Matthay, K. K. Neuroblastoma: Biology and staging. Curr. Oncol. Rep. 11, 431–438 (2009). 45. Cheung, N.-K.V Dyer, M. A. Neuroblastoma: developmental biology, cancer genomics and immunotherapy. Nat. Rev. Cancer 13, 397–411 (2013). 46. Li, Y. et al. SRI36160 is a specific inhibitor of Wnt/β-catenin signaling in human pancreatic and colorectal cancer cells. Cancer Lett. 389, 41–48 (2017). 47. Jin, B. et al. Anthelmintic Niclosamide Disrupts the Interplay of p65 and FOXM1/β-catenin and Eradicates Leukemia Stem Cells in Chronic Myelogenous Leukemia. Clin. Cancer Res. 23, 789–803 (2017). 48. Liu, Y. et al. Extracellular ATP drives breast cancer cell migration and metastasis via S100A4 production by cancer cells and fibroblasts. Cancer Lett. 430, 1–10 (2018). 49. Li, R. et al. Niclosamide overcomes acquired resistance to erlotinib through suppression of STAT3 in non-small cell lung cancer. Mol. Cancer Ther. 12, 2200–12 (2013). 50. Liu, C. et al. Niclosamide and Bicalutamide Combination Treatment Overcomes Enzalutamide- and Bicalutamide-Resistant Prostate Cancer. Mol. Cancer Ther. 16, 1521–1530 (2017). 51. Liu, C. et al. Niclosamide suppresses cell migration and invasion in enzalutamide resistant prostate cancer cells via Stat3-AR axis inhibition. Prostate 75, 1341–53 (2015). 52. Liu, C. et al. Niclosamide inhibits androgen receptor variants expression and overcomes enzalutamide resistance in castration-resistant prostate cancer. Clin. Cancer Res. 20, 3198–3210 (2014). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19310 | - |
| dc.description.abstract | 神經母細胞瘤是源自於交感神經系統的小兒腫瘤,其具有不同的臨床表徵。MYCN基因是神經母細胞瘤發病機制中確立的致癌驅動因子,對於MYCN基因擴增的高危險性神經母細胞瘤病患而言,即使結合多種治療方式,治療效果仍然不佳,而且其遺傳異質性已大大阻礙了分子靶標藥物的治療效果。在這裡,我們基於基因表現的方法,將與高危險性神經母細胞瘤相關的基因表現與從多達一百萬個藥物擾動基因資訊建構出藥物擾動與高風險神經母細胞瘤基因表現的關係,藉由評估給定化合物或其組合可能“反轉“高危險性神經母細胞瘤基因表現的效果,我們找到了FDA批准的驅蟲藥氯硝柳胺作為潛在的抗神經母細胞瘤藥物。進一步,我們進行了即時聚合酶鏈式反應(qPCR)來驗證參與DNA複製的前五名候選基因:包括細胞週期蛋白A2(CCNA2)、微染色體維持10複製起始因子(MCM10)、紡錘體組裝檢查點解旋酶ERCC切除修復6(ERCC6L)、驅動蛋白家族成員20A(KIF20A)和RuvB AAA腺苷酶1(RUVBL1)。實驗結果表明,這些基因在氯硝柳胺處理的細胞中表現量下降,表示氯硝柳胺抑制DNA複製並進一步抑制細胞增殖。進一步,我們利用細胞增殖、細胞群落生成實驗以及流式細胞儀測定了氯硝柳胺在MYCN基因擴增的SK-N-DZ和MYCN基因未擴增的SK-N-AS細胞中的細胞毒性作用。實驗結果顯示氯硝柳胺不僅能夠有效減少細胞增殖和細胞群落形成,還能夠誘導細胞週期停滯和細胞凋亡。此外,我們在裸鼠模型中進行人類腫瘤異種移植以評估氯硝柳胺的治療效果,發現氯硝柳胺能夠顯著抑制腫瘤生長和延長裸鼠存活率,但是不會造成器官損傷和改變體重。為了探討氯硝柳胺的分子機制,我們於MYCN基因擴增的SK-N-DZ和MYCN基因未擴增的SK-N-AS細胞與動物模型進行穩定同位素二甲基標記的蛋白體學進行分析。我們在高危險群神經母細胞瘤細胞中除了確認先前研究報導關於氯硝柳胺會調控線粒體電子傳遞鏈系中的功能外,也發現了其他新的調控功能。這些結果表明,我們開發基於基因表現的策略對於老藥新用是有成效的,也提供了驅蟲藥物氯硝柳胺老藥新用於治療高危險性神經母細胞瘤療法的可能性。 | zh_TW |
| dc.description.abstract | Neuroblastoma is a pediatric tumor of the peripheral sympathetic nervous system with diverse clinical behaviors. Even with multimodal therapies, high-risk neuroblastoma has an unfavorable outcome irrespective of MYCN amplification, a well-established oncogenic driver in neuroblastoma pathogenesis, and its genetic heterogeneity has largely impeded efforts to correlate molecular targets with biological consequences for more effective treatment strategies. Here, using a gene expression-based approach, we identified the FDA-approved anthelmintic niclosamide as a potential anti-neuroblastoma drug. By combining the gene expression signature associated with high-risk neuroblastoma and the recurrent drug−transcript relationships inferred from up to one million perturbational gene expression profiles, our algorithm predicted effective therapeutic candidates by evaluating the extent to which a given compound or their combinations could ‘reverse’ the high-risk signature. Furthermore, we performed quantitative polymerase chain reaction (qPCR) to validate top five candidate reverse genes which are involved in DNA replication, including cyclin A2 (CCNA2), minichromosome maintenance 10 replication initiation factor (MCM10), ERCC excision repair 6 like, spindle assembly checkpoint helicase (ERCC6L), kinesin family member 20A (KIF20A), and RuvB like AAA ATPase 1 (RUVBL1). Indeed, those five genes were downregulated in niclosamide-treated cells, indicating niclosamide suppressed DNA replication and then inhibited cell proliferation. Using cell proliferation and clonogenic assays as well as flow cytometry, we determined the cytotoxic effects of niclosamide in MYCN-amplified SK-N-DZ and non-amplified SK-N-AS cells. The results showed that niclosamide could effectively reduce not only cell proliferation and colony formation but also trigger cell cycle arrest and apoptosis. Moreover, we conducted human tumor xenografts in a nude mice model to evaluate the in vivo efficacy of niclosamide and found that it significantly suppressed tumor growth and prolonged survival rate, but doesn’t cause organ damage and change body weight. To explore the molecular mechanism of niclosamide, stable-isotope dimethyl labeling strategy for quantitative proteomics was performed on both cell-based or xenograft-based MYCN-amplified SK-N-DZ and MYCN-nonamplified SK-N-AS models. We confirmed niclosamide not only mediated the function of mitochondrial electron transport chain but also the other functions in high risk neuroblastoma cell lines. The results suggest that our developed expression-based strategy is useful for drug discovery and provides the possibility of repurposing the anthelminthic drug niclosamide for treating high-risk neuroblastoma therapy. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T01:53:06Z (GMT). No. of bitstreams: 1 U0001-1708202012200700.pdf: 6152790 bytes, checksum: a0c93452ee457e8a4ae6eb7123d4fa43 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 誌謝 II 中文摘要 IV Abstract V Contents VII Chapter 1 Introduction 1 1.1 Neuroblastoma 1 1.2 Drug discovery and repurposing 1 1.3 Niclosamide 2 1.3.1 The anti-helminthic effect of niclosamide 2 1.3.2 The anti-cancer activity of niclosamide 3 1.4 Proteomics 3 1.4.1 Introduction 3 1.4.2 Stable-isotope dimethyl labeling for quantitative proteomics 4 1.5 Motivation 5 Chapter 2 Materials and methods 6 2.1 Experimental design 6 2.2 Recurrent perturbation-gene relationships for therapeutic discovery 6 2.3 Data source for genomic analyses in high-risk neuroblastoma 8 2.4 Cell culture 9 2.5 Drug treatment 10 2.6 RNA extraction and cDNA synthesis 10 2.7 Real-time quantitative RT-PCR (qRT-PCR) assays 11 2.8 Cell viability assay using MTS assay 11 2.9 Colony formation assay 12 2.10 Animal model efficacy studies 12 2.11 Tumor protein preparation 13 2.12 Reduction, alkylation, and digestion of proteins 14 2.13 Dimethyl labeling of peptides 15 2.14 Strong cation exchange (SCX) chromatography 16 2.15 StageTip desalting 17 2.16 Liquid chromatography–tandem mass spectrometry (LC–MS/MS) analysis 18 2.17 Protein identification and quantification 18 2.18 Functional enrichment analysis 19 2.19 Western blot analysis 20 2.20 Cell cycle analysis 20 2.21 Apoptosis analysis 21 2.22 Statistical analysis 21 Chapter 3 Results 23 3.1 Drug repurposing via recurrent perturbation-gene relationships 23 3.2 Validation of gene reversal by the compound using qPCR 23 3.3 Niclosamide induces cytotoxicity of neuroblastoma cell lines 24 3.4 Niclosamide inhibits proliferation of neuroblastoma cell lines 25 3.5 Niclosamide exerts anti-cancer activities on neuroblastoma xenograft mice 26 3.6 Proteomic analysis identifies the differential expressed proteins after niclosamide treatment 27 3.7 Niclosamide causes cell cycle arrest in neuroblastoma cell lines 28 3.8 Niclosamide induces apoptosis in neuroblastoma cell lines 28 Chapter 4 Discussion 30 Chapter 5 Conclusion 33 Chapter 6 References 34 Figures 40 Tables 71 Appendix 131 | |
| dc.language.iso | en | |
| dc.title | 以基因表現策略探討驅蟲藥Niclosamide於高危險性神經母細胞瘤之治療效果 | zh_TW |
| dc.title | A Gene Expression-based Strategy Identifies the Anthelminthic Drug Niclosamide for High-risk Neuroblastoma Therapy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃宣誠(Hsuan-Cheng Huang),黃敏銓(Min-Chuan Huang),許文明(Wen-Ming Hsu),劉彥麟(Yen-Lin Liu) | |
| dc.subject.keyword | 神經母細胞瘤,MYCN,即時聚合酶鏈式反應,藥物擾動與基因表現關係,氯硝柳胺,NME3, | zh_TW |
| dc.subject.keyword | Neuroblastoma,MYCN,quantitative polymerase chain reaction,recurrent drug−transcript relationships,niclosamide,NME3, | en |
| dc.relation.page | 132 | |
| dc.identifier.doi | 10.6342/NTU202003718 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-20 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1708202012200700.pdf 未授權公開取用 | 6.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
