Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19305
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor夏俊雄
dc.contributor.authorPo-Wei Lien
dc.contributor.author李柏緯zh_TW
dc.date.accessioned2021-06-08T01:52:55Z-
dc.date.copyright2016-09-13
dc.date.issued2016
dc.date.submitted2016-07-20
dc.identifier.citation[1] C. Bardos, G. Lebeau, and J. Rauch. Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM journal on control and optimization, 30(5):1024–1065, 1992.
[2] A. Bensoussan. An introduction to the hilbert uniqueness method. In Analysis and Optimization of Systems: State and Frequency Domain Approaches for Infinite-Dimensional Systems, pages 184–198. Springer, 1993.
[3] J.-M. Coron. Control and nonlinearity. Number 136. American Mathematical Soc., 2007.
[4] G. E. Fasshauer, B. P. Rynne, and M. A. Youngson. Linear functional analysis., 2010.
[5] A. E. Ingham. Some trigonometrical inequalities with applications to the theory of series. Mathematische Zeitschrift, 41(1):367–379, 1936.
[6] V. Komornik and V. Gattulli. Exact controllability and stabilization. the multiplier method. SIAM Review, 39(2):351–351, 1997.
[7] J. L. Lions. Contrôlabilité exacte perturbations et stabilisation de systèmes distribués(tome 1, contrôlabilité exacte. tome 2, perturbations). Recherches en mathematiques appliquées, 1988.
[8] A. Pazy. Semigroups of linear operators and applications to partial differential equations, volume 44. Springer Science & Business Media, 2012.
[9] L. Rosier. Exact boundary controllability for the korteweg-de vries equation on a bounded domain. ESAIM: Control, Optimisation and Calculus of Variations, 2:33-55, 1997.
[10] W. Rudin. Principles of mathematical analysis, volume 3. McGraw-Hill New York, 1964.
[11] D. L. Russell and B. Y. Zhang. Controllability and stabilizability of the third-order linear dispersion equation on a periodic domain. SIAM journal on control and optimization, 31(3):659–676, 1993.
[12] J. Simon. Compact sets in the spacel p (o, t; b). Annali di Matematica pura ed applicata, 146(1):65–96, 1986.
[13] E. M. Stein and R. Shakarchi. Princeton lectures in analysis. Princeton University Press, 2003.
[14] K. Yosida. Functional analysis. reprint of the sixth (1980) edition. classics in mathematics. Springer-Verlag, Berlin, 11:14, 1995.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19305-
dc.description.abstract在這篇文章中我們探討控制理論之Lionel Rosier 定理。控制性概括
來說: 給定初始狀態及終端狀態,我們希望找到一個控制函數來引導此
系統,使得給定初始值之系統能確保終端時刻的狀態是我們所要的。
而此篇研究的對象為KdV 方程。
zh_TW
dc.description.abstractIn this paper we shall survey Lionel Rosier’s theorem ([9]) about control
theory. Roughly speaking, by controllability ([3]) we mean: given the initial
state and the terminal state, we want to find a control function which can steer
the system, such that the system with initial data can ensure the terminal state
is the desired. In this paper, we study the KdV equation.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:52:55Z (GMT). No. of bitstreams: 1
ntu-105-R01221026-1.pdf: 633609 bytes, checksum: 9ef367c6e9cc8da16e797fd24fe27c9f (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 ... iii
摘要 ... v
Abstract vii
1 Introduction and Main Theorems ... 1
2 Exact Boundary Controllability of Linear KdV Equation via Controlling the Boundary Conditions ...5
3 Exact Boundary Controllability of Linear KdV Equation via Controlling the y_x(t,L) Term ... 15
4 Exact Boundary Controllability of Non-linear KdV Equation on a Bounded Domain ... 27
5 Conclusion ... 33
Bibliography ... 35
dc.language.isoen
dc.titleKdV方程在有界域內的精準邊界控制性之探討zh_TW
dc.titleA Survey on Exact Boundary Controllability for the Korteweg-De Vries Equation on a Bounded Domainen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee洪盟凱,鄭經
dc.subject.keywordKdV 方程,Hilbert 唯一性方法,Fourier 轉換,半群,Lax- Milgram 定理,zh_TW
dc.subject.keywordKdV equation,H.U.M.,Fourier transform,semigroup,Lax-Milgram theorem,en
dc.relation.page36
dc.identifier.doi10.6342/NTU201601108
dc.rights.note未授權
dc.date.accepted2016-07-20
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
618.76 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved