請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19293完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃銓珍(Chang-Jen Huang) | |
| dc.contributor.author | Shang-Po Jiang | en |
| dc.contributor.author | 簡上博 | zh_TW |
| dc.date.accessioned | 2021-06-08T01:52:23Z | - |
| dc.date.copyright | 2016-10-14 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-07-21 | |
| dc.identifier.citation | Bain, B.J. (2010). Neutrophil dysplasia demonstrated on Sudan black B staining. Am J Hematol 85, 707.
Bojdo, A., Obersztyn, E., Wallgren-Pettersson, C., Lehtokari, V., Laing, N., Davis, M., and Kulakowska, Z. (2009). Nemaline myopathy as a cause of neonatal hypotonia - with emphasis on personal experiences. Report of a family with two brothers affected. Med Wieku Rozwoj 13, 5-10. Cai, Z., Jitkaew, S., Zhao, J., Chiang, H.C., Choksi, S., Liu, J., Ward, Y., Wu, L.G., and Liu, Z.G. (2014). Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat Cell Biol 16, 55-65. Chang, P., Dong, W., Zhang, M., Wang, Z., Wang, Y., Wang, T., Gao, Y., Meng, H., Luo, B., Luo, C., et al. (2014). Anti-necroptosis chemical necrostatin-1 can also suppress apoptotic and autophagic pathway to exert neuroprotective effect in mice intracerebral hemorrhage model. J Mol Neurosci 52, 242-249. Chen, D., Yu, J., and Zhang, L. (2016). Necroptosis: an alternative cell death program defending against cancer. Biochim Biophys Acta 1865, 228-236. Cheng, H.H., Kuo, C.C., Yan, J.L., Chen, H.L., Lin, W.C., Wang, K.H., Tsai, K.K., Guven, H., Flaberg, E., Szekely, L., et al. (2012). Control of cyclooxygenase-2 expression and tumorigenesis by endogenous 5-methoxytryptophan. Proc Natl Acad Sci U S A 109, 13231-13236. Cho, Y.S., Challa, S., Moquin, D., Genga, R., Ray, T.D., Guildford, M., and Chan, F.K. (2009). Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137, 1112-1123. Cossins, J., Belaya, K., Hicks, D., Salih, M.A., Finlayson, S., Carboni, N., Liu, W.W., Maxwell, S., Zoltowska, K., Farsani, G.T., et al. (2013). Congenital myasthenic syndromes due to mutations in ALG2 and ALG14. Brain 136, 944-956. De Bleecker, J.L. (2005). How to approach the patient with muscular symptoms in the general neurological practice? Acta Neurol Belg 105, 18-22. Declercq, W., Vanden Berghe, T., and Vandenabeele, P. (2009). RIP kinases at the crossroads of cell death and survival. Cell 138, 229-232. Degterev, A., Hitomi, J., Germscheid, M., Ch'en, I.L., Korkina, O., Teng, X., Abbott, D., Cuny, G.D., Yuan, C., Wagner, G., et al. (2008). Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4, 313-321. Degterev, A., Huang, Z., Boyce, M., Li, Y., Jagtap, P., Mizushima, N., Cuny, G.D., Mitchison, T.J., Moskowitz, M.A., and Yuan, J. (2005). Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1, 112-119. Devassy, J.G., Nwachukwu, I.D., and Jones, P.J. (2015). Curcumin and cancer: barriers to obtaining a health claim. Nutr Rev 73, 155-165. Dondelinger, Y., Declercq, W., Montessuit, S., Roelandt, R., Goncalves, A., Bruggeman, I., Hulpiau, P., Weber, K., Sehon, C.A., Marquis, R.W., et al. (2014). MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Rep 7, 971-981. Feng, M., Zhang, R., Gong, F., Yang, P., Fan, L., Ni, J., Bi, W., Zhang, Y., Wang, C., and Wang, K. (2014). Protective effects of necrostatin-1 on glucocorticoid-induced osteoporosis in rats. J Steroid Biochem Mol Biol 144 Pt B, 455-462. Gerlach, B., Cordier, S.M., Schmukle, A.C., Emmerich, C.H., Rieser, E., Haas, T.L., Webb, A.I., Rickard, J.A., Anderton, H., Wong, W.W., et al. (2011). Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 471, 591-596. Gupta, S.C., Kim, J.H., Prasad, S., and Aggarwal, B.B. (2010). Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer Metastasis Rev 29, 405-434. Huang, T., Karsy, M., Zhuge, J., Zhong, M., and Liu, D. (2013). B-Raf and the inhibitors: from bench to bedside. J Hematol Oncol 6, 30. Jacobsen, A.V., Lowes, K.N., Tanzer, M.C., Lucet, I.S., Hildebrand, J.M., Petrie, E.J., van Delft, M.F., Liu, Z., Conos, S.A., Zhang, J.G., et al. (2016). HSP90 activity is required for MLKL oligomerisation and membrane translocation and the induction of necroptotic cell death. Cell Death Dis 7, e2051. Kaczmarek, A., Vandenabeele, P., and Krysko, D.V. (2013). Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity 38, 209-223. Kaiser, W.J., Upton, J.W., and Mocarski, E.S. (2013). Viral modulation of programmed necrosis. Curr Opin Virol 3, 296-306. Kim, S.K., Kim, W.J., Yoon, J.H., Ji, J.H., Morgan, M.J., Cho, H., Kim, Y.C., and Kim, Y.S. (2015). Upregulated RIP3 Expression Potentiates MLKL Phosphorylation-Mediated Programmed Necrosis in Toxic Epidermal Necrolysis. J Invest Dermatol 135, 2021-2030. Koo, M.J., Rooney, K.T., Choi, M.E., Ryter, S.W., Choi, A.M., and Moon, J.S. (2015). Impaired oxidative phosphorylation regulates necroptosis in human lung epithelial cells. Biochem Biophys Res Commun 464, 875-880. Lee, T.H., Shank, J., Cusson, N., and Kelliher, M.A. (2004). The kinase activity of Rip1 is not required for tumor necrosis factor-alpha-induced IkappaB kinase or p38 MAP kinase activation or for the ubiquitination of Rip1 by Traf2. J Biol Chem 279, 33185-33191. Li, D., Xu, T., Cao, Y., Wang, H., Li, L., Chen, S., Wang, X., and Shen, Z. (2015). A cytosolic heat shock protein 90 and cochaperone CDC37 complex is required for RIP3 activation during necroptosis. Proc Natl Acad Sci U S A 112, 5017-5022. Li, J., McQuade, T., Siemer, A.B., Napetschnig, J., Moriwaki, K., Hsiao, Y.S., Damko, E., Moquin, D., Walz, T., McDermott, A., et al. (2012). The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell 150, 339-350. Li, J.X., Feng, J.M., Wang, Y., Li, X.H., Chen, X.X., Su, Y., Shen, Y.Y., Chen, Y., Xiong, B., Yang, C.H., et al. (2014). The B-Raf(V600E) inhibitor dabrafenib selectively inhibits RIP3 and alleviates acetaminophen-induced liver injury. Cell Death Dis 5, e1278. Liao, D.H., Sun, L.M., Liu, W.L., He, S.D., Wang, X.D., and Lei, X.G. (2014). Necrosulfonamide inhibits necroptosis by selectively targeting the mixed lineage kinase domain-like protein. Medchemcomm 5, 333-337. Lin, Y., Devin, A., Rodriguez, Y., and Liu, Z.G. (1999). Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes Dev 13, 2514-2526. Lindsten, T., Ross, A.J., King, A., Zong, W.X., Rathmell, J.C., Shiels, H.A., Ulrich, E., Waymire, K.G., Mahar, P., Frauwirth, K., et al. (2000). The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol Cell 6, 1389-1399. Liu, Z.Y., Wu, B., Guo, Y.S., Zhou, Y.H., Fu, Z.G., Xu, B.Q., Li, J.H., Jing, L., Jiang, J.L., Tang, J., et al. (2015). Necrostatin-1 reduces intestinal inflammation and colitis-associated tumorigenesis in mice. Am J Cancer Res 5, 3174-3185. Lossner, J., Scheidemann, I., and Gohler, I. (1987). Contributions to clinical myology. Examination strategies in general practice. Psychiatr Neurol Med Psychol Beih 38, 19-36. Lu, W., Sun, J., Yoon, J.S., Zhang, Y., Zheng, L., Murphy, E., Mattson, M.P., and Lenardo, M.J. (2016). Mitochondrial Protein PGAM5 Regulates Mitophagic Protection against Cell Necroptosis. PLoS One 11, e0147792. Micheau, O., and Tschopp, J. (2003). Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114, 181-190. Mills, K.R., and Edwards, R.H. (1983). Investigative strategies for muscle pain. J Neurol Sci 58, 73-78. Mocarski, E.S., Upton, J.W., and Kaiser, W.J. (2012). Viral infection and the evolution of caspase 8-regulated apoptotic and necrotic death pathways. Nat Rev Immunol 12, 79-88. Moquin, D., and Chan, F.K. (2010). The molecular regulation of programmed necrotic cell injury. Trends Biochem Sci 35, 434-441. Moriwaki, K., and Chan, F.K. (2013). RIP3: a molecular switch for necrosis and inflammation. Genes Dev 27, 1640-1649. Negi, P.S., Jayaprakasha, G.K., Jagan Mohan Rao, L., and Sakariah, K.K. (1999). Antibacterial activity of turmeric oil: a byproduct from curcumin manufacture. J Agric Food Chem 47, 4297-4300. Nishiyama, T., Mae, T., Kishida, H., Tsukagawa, M., Mimaki, Y., Kuroda, M., Sashida, Y., Takahashi, K., Kawada, T., Nakagawa, K., et al. (2005). Curcuminoids and sesquiterpenoids in turmeric (Curcuma longa L.) suppress an increase in blood glucose level in type 2 diabetic KK-Ay mice. J Agric Food Chem 53, 959-963. O'Donnell, M.A., Hase, H., Legarda, D., and Ting, A.T. (2012). NEMO inhibits programmed necrosis in an NFkappaB-independent manner by restraining RIP1. PLoS One 7, e41238. Oberst, A., Dillon, C.P., Weinlich, R., McCormick, L.L., Fitzgerald, P., Pop, C., Hakem, R., Salvesen, G.S., and Green, D.R. (2011). Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature 471, 363-367. Phillips, B.A., and Mastaglia, F.L. (2000). Exercise therapy in patients with myopathy. Curr Opin Neurol 13, 547-552. Plummer, S.M., Holloway, K.A., Manson, M.M., Munks, R.J., Kaptein, A., Farrow, S., and Howells, L. (1999). Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-kappaB activation via the NIK/IKK signalling complex. Oncogene 18, 6013-6020. Roychowdhury, S., McMullen, M.R., Pisano, S.G., Liu, X., and Nagy, L.E. (2013). Absence of receptor interacting protein kinase 3 prevents ethanol-induced liver injury. Hepatology 57, 1773-1783. Schadendorf, D., Amonkar, M.M., Stroyakovskiy, D., Levchenko, E., Gogas, H., de Braud, F., Grob, J.J., Bondarenko, I., Garbe, C., Lebbe, C., et al. (2015). Health-related quality of life impact in a randomised phase III study of the combination of dabrafenib and trametinib versus dabrafenib monotherapy in patients with BRAF V600 metastatic melanoma. Eur J Cancer 51, 833-840. Sharma, O.P. (1976). Antioxidant activity of curcumin and related compounds. Biochem Pharmacol 25, 1811-1812. Sharma, S., Kulkarni, S.K., and Chopra, K. (2006). Curcumin, the active principle of turmeric (Curcuma longa), ameliorates diabetic nephropathy in rats. Clin Exp Pharmacol Physiol 33, 940-945. Silke, J., Rickard, J.A., and Gerlic, M. (2015). The diverse role of RIP kinases in necroptosis and inflammation. Nat Immunol 16, 689-697. Sun, L., Wang, H., Wang, Z., He, S., Chen, S., Liao, D., Wang, L., Yan, J., Liu, W., Lei, X., et al. (2012). Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148, 213-227. Teng, X., Degterev, A., Jagtap, P., Xing, X., Choi, S., Denu, R., Yuan, J., and Cuny, G.D. (2005). Structure-activity relationship study of novel necroptosis inhibitors. Bioorg Med Chem Lett 15, 5039-5044. Varfolomeev, E.E., Schuchmann, M., Luria, V., Chiannilkulchai, N., Beckmann, J.S., Mett, I.L., Rebrikov, D., Brodianski, V.M., Kemper, O.C., Kollet, O., et al. (1998). Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity 9, 267-276. Vucic, D., Dixit, V.M., and Wertz, I.E. (2011). Ubiquitylation in apoptosis: a post-translational modification at the edge of life and death. Nat Rev Mol Cell Biol 12, 439-452. Wang, L., Du, F., and Wang, X. (2008). TNF-alpha induces two distinct caspase-8 activation pathways. Cell 133, 693-703. Wang, Y.F., Hsu, Y.J., Wu, H.F., Lee, G.L., Yang, Y.S., Wu, J.Y., Yet, S.F., Wu, K.K., and Kuo, C.C. (2016). Endothelium-Derived 5-Methoxytryptophan Is a Circulating Anti-inflammatory Molecule that Blocks Systemic Inflammation. Circ Res. Wang, Z., Jiang, H., Chen, S., Du, F., and Wang, X. (2012). The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell 148, 228-243. Yang, C.K., and He, S.D. (2016). Heat shock protein 90 regulates necroptosis by modulating multiple signaling effectors. Cell Death Dis 7, e2126. Yeh, W.C., de la Pompa, J.L., McCurrach, M.E., Shu, H.B., Elia, A.J., Shahinian, A., Ng, M., Wakeham, A., Khoo, W., Mitchell, K., et al. (1998). FADD: essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science 279, 1954-1958. Zhang, D.W., Shao, J., Lin, J., Zhang, N., Lu, B.J., Lin, S.C., Dong, M.Q., and Han, J. (2009). RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325, 332-336. Zhang, H., Zhou, X., McQuade, T., Li, J., Chan, F.K., and Zhang, J. (2011). Functional complementation between FADD and RIP1 in embryos and lymphocytes. Nature 471, 373-376. Zhao, Y., Hu, J., Zhao, Z., Shen, H., Bing, Q., and Li, N. (2016). Next generation sequencing reveals RYR1 mutations in a Chinese central core disease cohort. Muscle Nerve. Zheng, X.X., Shoffner, J.M., Voljavec, A.S., and Wallace, D.C. (1990). Evaluation of procedures for assaying oxidative phosphorylation enzyme activities in mitochondrial myopathy muscle biopsies. Biochim Biophys Acta 1019, 1-10. Zhou, W., and Yuan, J. (2014). Necroptosis in health and diseases. Semin Cell Dev Biol 35, 14-23. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19293 | - |
| dc.description.abstract | 薑黃素(curcumin)是一種從薑黃根莖中提取得到的黃色色素。早期用來做食品加工的食用色素;而現在醫學研究也發現薑黃素具有抗氧化、抗發炎、降血脂等功能,甚至於能抑制癌細胞增生,促進其走向細胞凋亡而達到抗癌的醫療作用。先前研究指出,用低濃度的薑黃素處理斑馬魚胚胎,會造成不正常的發育問題;而於此篇研究,我們將斑馬魚胚胎以高濃度(54 μM)的薑黃素處理,觀察到會有尾部潰爛的現象,此現象會隨著溫度、濃度以及時間呈現正向相關。利用AO staining也發現尾部的細胞有細胞凋亡的現象發生,此外,延時錄相顯示出這樣的潰爛現象是一個快速、連續的尾部崩解現象。我們接著使用蘇丹黑的染色方法觀察到免疫反應隨著薑黃素的處理而上升,並透過qPCR更證明了在necroptosis裡面扮演重要角色的HSP90基因表現量也隨著薑黃素處理而上升。而Rip1、Rip3以及HSP90目前都具有專一抑制的抑制劑,分別為Necrostatin-1、Dabrafenib及17-DMAG,我們選用這三種藥物去測試是否能延緩斑馬魚的尾部潰爛現象以及此現象的發生是否與Necroptosis相關。我們將受精後一天的斑馬魚浸泡在具有Curcumin藥物處理的養殖水再個別搭配三種抑制藥物處理後發現尾部潰爛現象確實可被延緩,而從中證明了這個薑黃素所造成的尾部潰爛的現象是一個透過rip1以及rip3去作用的necroptosis路徑。
最後,我們透過先讓薑黃素作用,之後再加入抑制藥物的實驗方式去模擬病人的發病模式,發現此薑黃素造成尾部潰爛現象的斑馬魚可作為Necroptosis研究的生物模式以及未來可以應用於治療藥物的篩選。 | zh_TW |
| dc.description.abstract | Curcumin has multiple roles in different pathway such as antioxidant, hypoglycemic, anti-inflammatory and anti-cancer function. In previous study, curcumin was proved to have its embryotoxic and teratogenic effects on zebrafish development at low dose. In this study, we indicated that 24 hpf embryos treated with curcumin at high dose (54 μM) displayed severe tail bud damage, which is in a dose- and temperature-dependent manner. By using AO staining, we demonstrated that apoptosis was involved in the tail bud damage of embryos. Moreover, time-lapse recording indicated that curcumin-induced myopathy is a continuous and fast damage phenomenon. We then performed Sudan black B staining and discovered an excessive immune response in curcumin-induced myopathy. Besides, qPCR data showed that higher mRNA level of heat-shock protein 90 (hsp90) was induced during curcumin-induced myopathy. It led us to investigate the roles of rip1/rip3 complex during curcumin-induced myopathy and its correlation with necroptosis. By using necrostatin-1 (rip1 inhibitor), dabrafenib (rip3 inhibitor) and hsp90 inhibitor to treat zebrafish embryos with curcumin treatment, our data indicated that all of these three inhibitors could postpone curcumin-induced myopathy progression, suggesting that curcumin- induced myopathy may be a rip1- and rip3-dependent pathway.
Taken together, in this study we established a curcumin-induced myopathy in zebrafish, which has potential to be a new necroptosis animal model. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T01:52:23Z (GMT). No. of bitstreams: 1 ntu-105-R03b46021-1.pdf: 2191203 bytes, checksum: bbfe0a0481f542ed96c21b8c6fe5ac75 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | Content (I)
中文摘要 (IV) Abstract (V) Introduction (1) Specific aims (9) Materials and methods (11) Results (21) Discussion (26) References (28) Figures (39) Tables (53) Appendix (56) | |
| dc.language.iso | en | |
| dc.title | 有關薑黃素引發斑馬魚肌肉病變之機制探討 | zh_TW |
| dc.title | Underlying mechanism of curcumin-induced myopathy in zebrafish | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張震東(Geen-Dong Chang),張茂山(Mau-Sun Chang) | |
| dc.subject.keyword | 薑黃素(curcumin),Programmed Necrosis/Necroptosis,Necrostatin-1,Dabrafenib, | zh_TW |
| dc.subject.keyword | curcumin,myopathy,necroptosis,rip1,rip3, | en |
| dc.relation.page | 61 | |
| dc.identifier.doi | 10.6342/NTU201601196 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2016-07-22 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 2.14 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
