Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19263
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃鵬鵬(Pung-Pung Hwang)
dc.contributor.authorPo-Hsuan Sungen
dc.contributor.author宋帛軒zh_TW
dc.date.accessioned2021-06-08T01:51:07Z-
dc.date.copyright2016-08-24
dc.date.issued2016
dc.date.submitted2016-07-25
dc.identifier.citationBartol, I. K., Krueger, P. S., Thompson, J. T. and Stewart, W. J. (2008). Swimming dynamics and propulsive efficiency of squids throughout ontogeny. Integr Comp Biol 48, 720-33.
Bellamy, D. (1961). Movements of potassium, sodium and chloride in incubated gills from the silver eel. Comp Biochem Physiol 3, 125-135.
Boucher-Rodoni, R. and Mangold, K. (1988). Comparative Aspects of Ammonia Excretion in Cephalopods. Malacologia 29, 145-151.
Boucher-Rodoni, R. and Mangold, K. (1989). Respiration and Nitrogen-Excretion by the Squid Loligo-Forbesi. Marine Biology 103, 333-338.
Boucher-Rodoni, R. and Mangold, K. (1994). Ammonia production in cephalopods, physiological and evolutionary aspects. Marine and Freshwater Behaviour and Physiology 25, 53-60.
Budelmann, B. U. (2010). Cephalopoda. In The UFAW Handbook on The Care and Management of Laboratory and Other Research Animals, pp. 785 - 817.
Burnett, L. E. and Towle, D. W. (1990). Sodium-Ion Uptake by Perfused Gills of the Blue-Crab Callinectes-Sapidus - Effects of Ouabain and Amiloride. Journal of Experimental Biology 149, 293-305.
Burrows, R. E. (1964). Effects of accumulated excretory products on hatchery-reared salmonids: Bureau of Sport Fisheries and Wildlife.
Clarke, M. R. (1996). The role of cephalopods in the world's oceans: An introduction. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 351, 979-983.
Clarke, M. R., Denton, E. J. and Gilpin-Brown, J. B. (1979). On the use of ammonium for buoyancy in squids. Journal of the Marine Biological Association of the United Kingdom 59, 259-276.
Evans, D. H. and Cameron, J. N. (1986). Gill Ammonia Transport. Journal of Experimental Zoology 239, 17-23.
Fehsenfeld, S. and Weihrauch, D. (2012). Differential acid-base regulation in various gills of the green crab Carcinus maenas: Effects of elevated environmental pCO2. Comp Biochem Physiol A Mol Integr Physiol 164, 54-65.
Garcia, B. G., Valverde, J. C., Gomez, E., Hernandez, M. D. and Aguado-Gimenez, F. (2011). Ammonia excretion of octopus (Octopus vulgaris) in relation to body weight and protein intake. Aquaculture 319, 162-167.
Gong, F., Alzamora, R., Smolak, C., Li, H., Naveed, S., Neumann, D., Hallows, K. R. and Pastor-Soler, N. M. (2010). Vacuolar H+-ATPase apical accumulation in kidney intercalated cells is regulated by PKA and AMP-activated protein kinase. Am J Physiol Renal Physiol 298, F1162-9.
Gutowska, M. A., Melzner, F., Langenbuch, M., Bock, C., Claireaux, G. and Portner, H. O. (2010). Acid-base regulatory ability of the cephalopod (Sepia officinalis) in response to environmental hypercapnia. Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology 180, 323-335.
Hanlon, R. T. (1990). Maintenance, rearing, and culture of teuthoid and sepioid squids. In Squid as experimental animals, pp. 35-62: Springer.
Hanlon, R. T. and Messenger, J. B. (1998). Cephalopod behaviour, pp. 149: Cambridge University Press.
Harrison, F. and Martin, A. (1965). Excretion in the cephalopod, Octopus dofleini. Journal of Experimental Biology 42, 71-98.
Hoeger, U., Mommsen, T. P., O'Dor, R. and Webber, D. (1987). Oxygen uptake and nitrogen excretion in two cephalopods, octopus and squid. Comparative Biochemistry and Physiology Part A: Physiology 87, 63-67.
Holmes, R. M., Aminot, A., Kerouel, R., Hooker, B. A. and Peterson, B. J. (1999). A simple and precise method for measuring ammonium in marine and freshwater ecosystems. Canadian Journal of Fisheries and Aquatic Sciences 56, 1801-1808.
Hu, M. Y., Guh, Y. J., Stumpp, M., Lee, J. R., Chen, R. D., Sung, P. H., Chen, Y. C., Hwang, P. P. and Tseng, Y. C. (2014). Branchial NH4+-dependent acid-base transport mechanisms and energy metabolism of squid (Sepioteuthis lessoniana) affected by seawater acidification. Frontiers in Zoology 11.
Hu, M. Y., Hwang, P. P. and Tseng, Y. C. (2015). Recent advances in understanding trans-epithelial acid-base regulation and excretion mechanisms in cephalopods. Tissue Barriers 3, e1064196.
Hu, M. Y., Lee, J. R., Lin, L. Y., Shih, T. H., Stumpp, M., Lee, M. F., Hwang, P. P. and Tseng, Y. C. (2013). Development in a naturally acidified environment: Na+/H+-exchanger 3-based proton secretion leads to CO2 tolerance in cephalopod embryos. Frontiers in Zoology 10, 51.
Huffard, C. L. (2006). Locomotion by Abdopus aculeatus (Cephalopoda : Octopodidae): walking the line between primary and secondary defenses. Journal of Experimental Biology 209, 3697-3707.
Hwang, P. P. and Chou, M. Y. (2013). Zebrafish as an animal model to study ion homeostasis. Pflugers Arch 465, 1233-47.
Hwang, P. P., Lee, T. H. and Lin, L. Y. (2011). Ion regulation in fish gills: recent progress in the cellular and molecular mechanisms. Am J Physiol Regul Integr Comp Physiol 301, R28-47.
Ip, Y. K. and Chew, S. F. (2010). Ammonia production, excretion, toxicity, and defense in fish: a review. Front Physiol 1.
Kim, H.-Y. (2009). Renal handling of ammonium and acid base regulation. Electrolytes & Blood Pressure 7, 9-13.
Lin, C. C., Lin, L. Y., Hsu, H. H., Thermes, V., Prunet, P., Horng, J. L. and Hwang, P. P. (2012). Acid secretion by mitochondrion-rich cells of medaka (Oryzias latipes) acclimated to acidic freshwater. Am J Physiol Regul Integr Comp Physiol 302, R283-91.
Liu, S. T., Tsung, L., Horng, J. L. and Lin, L. Y. (2013). Proton-facilitated ammonia excretion by ionocytes of medaka (Oryzias latipes) acclimated to seawater. Am J Physiol Regul Integr Comp Physiol 305, R242-R251.
Martin, M., Fehsenfeld, S., Sourial, M. M. and Weihrauch, D. (2011). Effects of high environmental ammonia on branchial ammonia excretion rates and tissue Rh-protein mRNA expression levels in seawater acclimated Dungeness crab Metacarcinus magister. Comp Biochem Physiol A Mol Integr Physiol 160, 267-277.
Meade, J. W. (1985). Allowable ammonia for fish culture. The Progressive Fish-Culturist 47, 135-145.
Moorman, A. F., Vermeulen, J. L., Charles, R. and Lamers, W. H. (1989). Localization of ammonia‐metabolizing enzymes in human liver: Ontogenesis of heterogeneity. Hepatology 9, 367-372.
Nakada, T., Westhoff, C. M., Kato, A. and Hirose, S. (2007). Ammonia secretion from fish gill depends on a set of Rh glycoproteins. FASEB J 21, 1067-74.
Nawata, C. M., Hirose, S., Nakada, T., Wood, C. M. and Kato, A. (2010). Rh glycoprotein expression is modulated in pufferfish (Takifugu rubripes) during high environmental ammonia exposure. Journal of Experimental Biology 213, 3150-60.
Necco, A. and Martin, R. (1963). Behavior and estimation of the mitotic activity of the white body cells in Octopus vulgaris, cultured in vitro. Experimental Cell Research 30, 588-590.
O'dor, R. (1982). Respiratory metabolism and swimming performance of the squid, Loligo opalescens. Canadian Journal of Fisheries and Aquatic Sciences 39, 580-587.
Odor, R. K. and Webber, D. M. (1986). The Constraints on Cephalopods - Why Squid Arent Fish. Canadian Journal of Zoology-Revue Canadienne De Zoologie 64, 1591-1605.
Packard, A. (1972). Cephalopods and Fish - Limits of Convergence. Biological Reviews of the Cambridge Philosophical Society 47, 241-&.
Paunescu, T. G., Da Silva, N., Russo, L. M., McKee, M., Lu, H. A., Breton, S. and Brown, D. (2008). Association of soluble adenylyl cyclase with the V-ATPase in renal epithelial cells. Am J Physiol Renal Physiol 294, F130-8.
Pitts, R. F. (1971). The role of ammonia production and excretion in regulation of acid-base balance. New England Journal of Medicine 284, 32-38.
Potts, W. T. (1965). Ammonia Excretion in Octopus Dofleini. Comp Biochem Physiol 14, 339-55.
Quijada-Rodriguez, A. R., Treberg, J. R. and Weihrauch, D. (2015). Mechanism of ammonia excretion in the freshwater leech Nephelopsis obscura: characterization of a primitive Rh protein and effects of high environmental ammonia. Am J Physiol Regul Integr Comp Physiol 309, R692-705.
Rosa, R. and Seibel, B. A. (2008). Synergistic effects of climate-related variables suggest future physiological impairment in a top oceanic predator. Proc Natl Acad Sci U S A 105, 20776-80.
Scheel, D. and Bisson, L. (2012). Movement patterns of giant Pacific octopuses, Enteroctopus dofleini (Wulker, 1910). Journal of Experimental Marine Biology and Ecology 416, 21-31.
Schipp, R., Mollenhauer, S. and von Boletzky, S. (1979). Electron microscopical and histochemical studies of differentiation and function of the cephalopod gill (Sepia officinalis L.). Zoomorphologie 93, 193-207.
Schipp, R., Vonboletzky, S. and Doell, G. (1975). Ultrastructural and Cytochemical Investigations on Renal Appendages and Their Concrements in Dibranchiate Cephalopods (Mollusca, Cephalopoda). Zeitschrift Fur Morphologie Der Tiere 81, 279-304.
Segawa, S. (1991). Body Size and Oxygen-Consumption Rate of the Oval Squid Sepioteuthis-Lessoniana. Nippon Suisan Gakkaishi 57, 1651-1656.
Segawa, S. (1995). Effect of Temperature on Oxygen-Consumption of Juvenile Oval Squid Sepioteuthis-Lessoniana. Fisheries Science 61, 743-746.
Segawa, S. and Hanlon, R. T. (1988). Oxygen-Consumption and Ammonia Excretion Rates in Octopus-Maya, Loligo-Forbesi and Lolliguncula-Brevis (Mollusca, Cephalopoda). Marine Behaviour and Physiology 13, 389-400.
Seibel, B. A. (2007). On the depth and scale of metabolic rate variation: scaling of oxygen consumption rates and enzymatic activity in the Class Cephalopoda (Mollusca). Journal of Experimental Biology 210, 1-11.
Seibel, B. A. and Childress, J. J. (2000). Metabolism of benthic octopods (Cephalopoda) as a function of habitat depth and oxygen concentration. Deep-Sea Research Part I-Oceanographic Research Papers 47, 1247-1260.
Seibel, B. A. and Drazen, J. C. (2007). The rate of metabolism in marine animals: environmental constraints, ecological demands and energetic opportunities. Philosophical Transactions of the Royal Society B-Biological Sciences 362, 2061-2078.
Seibel, B. A., Goffredi, S. K., Thuesen, E. V., Childress, J. J. and Robison, B. H. (2004). Ammonium content and buoyancy in midwater cephalopods. Journal of Experimental Marine Biology and Ecology 313, 375-387.
Seibel, B. A., Thuesen, E. V., Childress, J. J. and Gorodezky, L. A. (1997). Decline in pelagic cephalopod metabolism with habitat depth reflects differences in locomotory efficiency. Biological Bulletin 192, 262-278.
Shih, T. H., Horng, J. L., Lai, Y. T. and Lin, L. Y. (2013). Rhcg1 and Rhbg mediate ammonia excretion by ionocytes and keratinocytes in the skin of zebrafish larvae: H+-ATPase-linked active ammonia excretion by ionocytes. Am J Physiol Regul Integr Comp Physiol 304, R1130-8.
Shuttleworth, T. (1972). A new isolated perfused gill preparation for the study of the mechanisms of ionic regulation in teleosts. Comparative Biochemistry and Physiology Part A: Physiology 43, 59-64.
Stumpp, M., Trubenbach, K., Brennecke, D., Hu, M. Y. and Melzner, F. (2012). Resource allocation and extracellular acid-base status in the sea urchin Strongylocentrotus droebachiensis in response to CO(2) induced seawater acidification. Aquat Toxicol 110-111, 194-207.
Tannen, R. L. (1978). Ammonia metabolism. American Journal of Physiology 235, F265-77.
Thomsen, J. and Melzner, F. (2010). Moderate seawater acidification does not elicit long-term metabolic depression in the blue mussel Mytilus edulis. Marine Biology 157, 2667-2676.
Thurston, R. V., Russo, R. C. and Vinogradov, G. (1981). Ammonia toxicity to fishes. Effect of pH on the toxicity of the unionized ammonia species. Environ Sci Technol 15, 837-840.
Tresguerres, M. (2014). sAC from aquatic organisms as a model to study the evolution of acid/base sensing. Biochim Biophys Acta 1842, 2629-35.
Tresguerres, M., Levin, L. R. and Buck, J. (2011). Intracellular cAMP signaling by soluble adenylyl cyclase. Kidney International 79, 1277-88.
Tresguerres, M., Parks, S. K., Wood, C. M. and Goss, G. G. (2007). V-H+ -ATPase translocation during blood alkalosis in dogfish gills: interaction with carbonic anhydrase and involvement in the postfeeding alkaline tide. Am J Physiol Regul Integr Comp Physiol 292, R2012-9.
Truchot, J.-P. (2012). Comparative aspects of extracellular acid-base balance: Springer Science & Business Media.
Voight, J. R., Portner, H. O. and ODor, R. K. (1994). A review of ammonia-mediated buoyancy in squids (Cephalopoda: Teuthoidea). Marine and Freshwater Behaviour and Physiology 25, 193-203.
Wall, S. M. (1996). Ammonium transport and the role of the Na,K-ATPase. Miner Electrolyte Metab 22, 311-7.
Webber, D. M., Aitken, J. P. and O'Dor, R. K. (2000). Costs of Locomotion and Vertic Dynamics of Cephalopods and Fish*. Physiological and Biochemical Zoology 73, 651-662.
Weihrauch, D., Becker, W., Postel, U., Riestenpatt, S. and Siebers, D. (1998). Active excretion of ammonia across the gills of the shore crab Carcinus maenas and its relation to osmoregulatory ion uptake. Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology 168, 364-376.
Weihrauch, D., Wilkie, M. P. and Walsh, P. J. (2009). Ammonia and urea transporters in gills of fish and aquatic crustaceans. Journal of Experimental Biology 212, 1716-30.
Weihrauch, D., Ziegler, A., Siebers, D. and Towle, D. W. (2002). Active ammonia excretion across the gills of the green shore crab Carcinus maenas: participation of Na(+)/K(+)-ATPase, V-type H(+)-ATPase and functional microtubules. Journal of Experimental Biology 205, 2765-75.
Weiner, I. D. and Verlander, J. W. (2013). Renal ammonia metabolism and transport. Compr Physiol 3, 201-20.
Weiner, I. D. and Verlander, J. W. (2014). Ammonia transport in the kidney by Rhesus glycoproteins. Am J Physiol Renal Physiol 306, F1107-20.
Wells, M. J. (1990). Oxygen Extraction and Jet Propulsion in Cephalopods. Canadian Journal of Zoology-Revue Canadienne De Zoologie 68, 815-824.
Wilkie, M. P. (2002). Ammonia excretion and urea handling by fish gills: Present understanding and future research challenges. Journal of Experimental Zoology 293, 284-301.
Wood, C. M., Pärt, P. and Wright, P. A. (1995). Ammonia and urea metabolism in relation to gill function and acid-base balance in a marine elasmobranch, the spiny dogfish (Squalus acanthias). Journal of Experimental Biology 198, 1545-1558.
Wood, J. W., Day, C. L., Lee, P. and O Dor, R. K. (2000). CephBase: testing ideas for cephalopod and other species-level databases. OCEANOGRAPHY-WASHINGTON DC-OCEANOGRAPHY SOCIETY- 13, 14-20.
Wright, P. A. (1995). Nitrogen excretion: three end products, many physiological roles. Journal of Experimental Biology 198, 273-81.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19263-
dc.description.abstract蛋白質是頭足類動物重要的營養來源,而氨是胺基酸代謝的主要產物,因此氨的調節對於頭足類動物生理恆定十分重要。本研究運用真蛸(Octopus vulgaris)、虎斑烏賊(Sepia pharaonis)以及萊氏擬烏賊(Sepioteuthis lessoniana)的鰓進行離體灌流實驗,比較並探討採取不同運動模式的頭足類動物對於氨之調節策略。實驗結果顯示:頭足類動物鰓部對氨的運輸皆具有雙面向的調節功能:真蛸、虎斑烏賊與萊氏擬烏賊鰓部血液中的含氨濃度分別高於300 μM與100 μM會進行排氨;而血液含氨濃度在分別低於300 μM (真蛸與虎斑烏賊)與100 μM (萊氏擬烏賊)時,則不排氨以維持鰓部氨濃度。檢測鰓部的排氨速率則發現:萊氏擬烏賊之排氨速率高於其他兩物種。另外,真蛸與虎斑烏賊正常血液含氨濃度皆高於萊氏擬烏賊。進一步經由血酸處理(pH 7.2)與對照組(pH 7.6)的比較結果發現:氫離子伴隨氨排除濃度增加的現象只出現在真蛸鰓部。這些結果暗指頭足類動物體內和鰓部組織的含氨濃度與牠們採取不同運動模式有著密切關聯。除此之外,本研究利用離體灌流優勢進行藥理實驗探討鰓部氨運輸之機制,成功地在軟體動物導入嶄新的離體生理研究模式並釐清頭足類對於氨的調節機制。zh_TW
dc.description.abstractRegulation of ammonia homeostasis is essential for cephalopods since protein is the major constituent of their diet and large amounts of ammonia will be produced by extensive amino acid catabolism. Cephalopods have successfully evolved different lifestyles to accommodate their own specific ecological niches in benthic and pelagic habitats. The cephalopod gill has been suggested to represent the major excretory organ thus we hypothesize that cephalopods evolved diverse mechanisms for ammonia regulation depending on their different lifestyles. We developed an in vitro system to study branchial NH4+ transport by using perfusion technic in isolated gills of octopus (Octopus vulgaris), cuttlefish (Sepia pharanois) and squid (Sepioteuthis lessoniana). The gills in all three species possess a bi-phasic NH4+ regulation. In octopus and cuttlefish gills, NH4+ is excreted at blood NH4+ levels higher than 300 μM and increased via ammoniagenesis at NH4+ levels lower than 300 μM. In contrast, squid gills excreted NH4+ at blood NH4+ level higher than 100 μM and accumulated NH4+ at blood NH4+ levels loer than 100 μM. Further experiments simulating extracellular acidosis (pH 7.2) demonstrated that the machinery of H+ secretion coupled with NH4+ excretion can be only observed in octopus gills. Moreover, the rates of NH4+ excretion were higher in squid gills compared to the other two species. The in vivo NH4+ levels were higher (~ 300 μM) in octopus and cuttlefish blood compared to those of squid (~ 25 μM). These observations inferred that the variations in ammonia homeostasis in these three octopus species are probably linked to their respective locomotory capacities. Moreover, pharmacological studies were also used to investigate the ammonia excretion mechanisms and the NH4+ regulation involved in cAMP-dependent pathways were also found in octopus and cuttlefish gills. The present study applied a new method to better understand the mechanisms of ammonia regulation in highly ammonotelic species.en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:51:07Z (GMT). No. of bitstreams: 1
ntu-105-R03b21016-1.pdf: 2291840 bytes, checksum: 46243b56b1db1271eb4f14a964629fcb (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents摘要 2
Abstract 3
Introduction 5
Lifestyle of coleoid cephalopods 5
Ecological and physiological variations in cephalopods 5
Ammonia excretion in cephalopod 6
Mechanism of ammonia transport 7
Acid-base regulation and ammonia excretion 8
Using perfusion technique to study the isolated cephalopod gill functions 10
Purpose and Hypothesis 10
Materials and methods 12
Experimental animals 12
Evaluation of blood pH values and NH4+ concentrations 12
Preparation of perfusion salines 13
Perfusion experiments 14
Immunostaining 15
Statistical analyses 16
Results 18
Evaluation of body fluid pH values and NH4+ concentrations 18
Determination of NH4+ concentrations after gill passage in response to salines with different NH4+ levels 18
Comparison of NH4+ excretion rates/transport rates in gills at different NH4+ levels of perfusion salines among the three species 19
Determination of H+ secretion rates and NH4+ excretion rates under acidosis 21
The effects of 8-br-cAMP and KH7 on branchial NH4+ regulation 22
Gill morphology and localization of transporters for ammonia excretion 23
Discussion 24
Variations of blood pH and NH4+ levels in squid, cuttlefish and octopus 24
Strategies of ammonia transport in branchial epithelia of cephalopods 27
Investigating the branchial NH4+ transport mechanism in cephalopod gills 31
Conclusion 35
References 37
Tables and Figures 38
dc.language.isoen
dc.title比較探討不同頭足類動物鰓部對於氨的調節策略zh_TW
dc.titleComparative studies of extra-renal organs in cephalopods:
ammonia excretion in gills
en
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.coadvisor陳俊宏(Jiun-Hong Chen)
dc.contributor.oralexamcommittee曾庸哲(Yung-Che Tseng),吳貫忠(Guan-Chung Wu)
dc.subject.keyword頭足類,運動模式,鰓,氨排除,zh_TW
dc.subject.keywordcephalopods,locomotion,gill,ammonia excretion,en
dc.relation.page65
dc.identifier.doi10.6342/NTU201601376
dc.rights.note未授權
dc.date.accepted2016-07-27
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生命科學系zh_TW
顯示於系所單位:生命科學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
2.24 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved