請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19250完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李明亭(Ming-Ting Lee) | |
| dc.contributor.author | Tsung-Hsun Lin | en |
| dc.contributor.author | 林宗翰 | zh_TW |
| dc.date.accessioned | 2021-06-08T01:50:36Z | - |
| dc.date.copyright | 2016-10-14 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-07-27 | |
| dc.identifier.citation | Adhami, V.M., D.N. Syed, N. Khan, and H. Mukhtar. 2012a. Dietary flavonoid fisetin: a novel dual inhibitor of PI3K/Akt and mTOR for prostate cancer management. Biochemical pharmacology. 84:1277-1281.
Agullo, G., L. Gamet-Payrastre, S. Manenti, C. Viala, C. Rémésy, H. Chap, and B. Payrastre. 1997. Relationship between flavonoid structure and inhibition of phosphatidylinositol 3-kinase: a comparison with tyrosine kinase and protein kinase C inhibition. Biochemical pharmacology. 53:1649-1657. Bacac, M., and I. Stamenkovic. 2008. Metastatic cancer cell. Annual review of pathology. 3:221-247. Baeuerle, P.A., and T. Henkel. 1994. Function and activation of NF-kappaB in the immune system. Annual review of immunology. 12:141-179. Bremm, A., and D. Komander. 2011. Emerging roles for Lys11-linked polyubiquitin in cellular regulation. Trends in biochemical sciences. 36:355-363. Bremm, A., and D. Komander. 2012. Synthesis and analysis of K11-linked ubiquitin chains. Methods in molecular biology. 832:219-228. Chaffer, C.L., and R.A. Weinberg. 2011. A perspective on cancer cell metastasis. Science. 331:1559-1564. Chen, M.F., K.D. Lee, M.S. Lu, C.C. Chen, M.J. Hsieh, Y.H. Liu, P.Y. Lin, and W.C. Chen. 2009. The predictive role of E2-EPF ubiquitin carrier protein in esophageal squamous cell carcinoma. Journal of molecular medicine. 87:307-320. Cheng, J.C., C. Chou, M. Kuo, and C. Hsieh. 2006. Radiation-enhanced hepatocellular carcinoma cell invasion with MMP-9 expression through PI3K/Akt/NF-κB signal transduction pathway. Oncogene. 25:7009-7018. Fridman, R., M. Toth, D. Peña, and S. Mobashery. 1995. Activation of progelatinase B (MMP-9) by gelatinase A (MMP-2). Cancer research. 55:2548-2555. Friedl, P., and K. Wolf. 2003. Tumour-cell invasion and migration: diversity and escape mechanisms. Nature Reviews Cancer. 3:362-374. Greten, F.R., and M. Karin. 2004. The IKK/NF-κB activation pathway—a target for prevention and treatment of cancer. Cancer letters. 206:193-199. Guarino, M., B. Rubino, and G. Ballabio. 2009. The role of epithelial‐mesenchymal transition in cancer pathology. Pathology. Hasebe, Y., K. Egawa, Y. Yamazaki, S. Kunimoto, Y. Hirai, Y. Ida, and K. Nose. 2003. Specific inhibition of hypoxia-inducible factor (HIF)-1 alpha activation and of vascular endothelial growth factor (VEGF) production by flavonoids. Biological & pharmaceutical bulletin. 26:1379-1383. Heussen, C., and E.B. Dowdle. 1980. Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Analytical biochemistry. 102:196-202. Jung, C.-R., K.-S. Hwang, J. Yoo, W.-K. Cho, J.-M. Kim, W.H. Kim, and D.-S. Im. 2006a. E2-EPF UCP targets pVHL for degradation and associates with tumor growth and metastasis. Nature medicine. 12:809-816. Kao, W.-T., C.-Y. Lin, L.-T. Lee, P.-P.H. Lee, C.-C. Hung, Y.-S. Lin, S.-H. Chen, F.-C. Ke, J.-J. Hwang, and M.-T. Lee. 2008a. Investigation of MMP-2 and-9 in a highly invasive A431 tumor cell sub-line selected from a Boyden chamber assay. Anticancer research. 28:2109-2120. Kessenbrock, K., V. Plaks, and Z. Werb. 2010. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 141:52-67. Laplante, M., and D.M. Sabatini. 2012a. mTOR signaling in growth control and disease. Cell. 149:274-293. Liang, J., H. Nishi, M.L. Bian, C. Higuma, T. Sasaki, H. Ito, and K. Isaka. 2012. The ubiquitin-conjugating enzyme E2-EPF is overexpressed in cervical cancer and associates with tumor growth. Oncology reports. 28:1519-1525. Lin, C.-Y., P.-H. Tsai, C.C. Kandaswami, G.-D. Chang, C.-H. Cheng, C.-J. Huang, P.-P. Lee, J.-J. Hwang, and M.-T. Lee. 2011a. Role of tissue transglutaminase 2 in the acquisition of a mesenchymal-like phenotype in highly invasive A431 tumor cells. Molecular cancer. 10:1. Lin, C.Y., P.H. Tsai, C.C. Kandaswami, P.P. Lee, C.J. Huang, J.J. Hwang, and M.T. Lee. 2011b. Matrix metalloproteinase-9 cooperates with transcription factor Snail to induce epithelial-mesenchymal transition. Cancer science. 102:815-827. Lin, Y.-C., P.-H. Tsai, C.-Y. Lin, C.-H. Cheng, T.-H. Lin, K.P. Lee, K.-Y. Huang, S.-H. Chen, J.-J. Hwang, and C.C. Kandaswami. 2013a. Impact of flavonoids on matrix metalloproteinase secretion and invadopodia formation in highly invasive A431-III cancer cells. PloS one. 8:e71903. Lin, Y.S., P.H. Tsai, C.C. Kandaswami, C.H. Cheng, F.C. Ke, P.P. Lee, J.J. Hwang, and M.T. Lee. 2011c. Effects of dietary flavonoids, luteolin, and quercetin on the reversal of epithelial–mesenchymal transition in A431 epidermal cancer cells. Cancer science. 102:1829-1839. Lopez-Lazaro, M. 2009. Distribution and biological activities of the flavonoid luteolin. Mini reviews in medicinal chemistry. 9:31-59. Luo, J.-L., S. Maeda, L.-C. Hsu, H. Yagita, and M. Karin. 2004. Inhibition of NF-κB in cancer cells converts inflammation-induced tumor growth mediated by TNFα to TRAIL-mediated tumor regression. Cancer cell. 6:297-305. Mattson, M., and M. Meffert. 2006. Roles for NF-κB in nerve cell survival, plasticity, and disease. Cell Death & Differentiation. 13:852-860. Middleton, E., Jr., C. Kandaswami, and T.C. Theoharides. 2000. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacological reviews. 52:673-751. Min, C., S.F. Eddy, D.H. Sherr, and G.E. Sonenshein. 2008. NF‐κB and epithelial to mesenchymal transition of cancer. Journal of cellular biochemistry. 104:733-744. Murakami, A., H. Ashida, and J. Terao. 2008. Multitargeted cancer prevention by quercetin. Cancer letters. 269:315-325. Nam, T.W., C.I. Yoo, H.T. Kim, C.H. Kwon, J.Y. Park, and Y.K. Kim. 2008. The flavonoid quercetin induces apoptosis and inhibits migration through a MAPK-dependent mechanism in osteoblasts. Journal of bone and mineral metabolism. 26:551-560. Pahwa, S., M.J. Stawikowski, and G.B. Fields. 2014. Monitoring and inhibiting MT1-MMP during cancer initiation and progression. Cancers. 6:416-435. Park, M.H., and J.T. Hong. 2016. Roles of NF-κB in Cancer and Inflammatory Diseases and Their Therapeutic Approaches. Cells. 5:15. Popovic, D., D. Vucic, and I. Dikic. 2014. Ubiquitination in disease pathogenesis and treatment. Nature medicine. 20:1242-1253. Pugh, C.W., and P.J. Ratcliffe. 2003. Regulation of angiogenesis by hypoxia: role of the HIF system. Nature medicine. 9:677-684. Ravishankar, D., K.A. Watson, S.Y. Boateng, R.J. Green, F. Greco, and H.M. Osborn. 2015. Exploring quercetin and luteolin derivatives as antiangiogenic agents. European journal of medicinal chemistry. 97:259-274. Roos, F.C., A.J. Evans, W. Brenner, B. Wondergem, J. Klomp, P. Heir, O. Roche, C. Thomas, H. Schimmel, K.A. Furge, B.T. Teh, J.W. Thuroff, C. Hampel, and M. Ohh. 2011. Deregulation of E2-EPF ubiquitin carrier protein in papillary renal cell carcinoma. The American journal of pathology. 178:853-860. Saiki, I., J. Yoneda, I. Azuma, H. Fujii, F. Abe, M. Nakajima, and T. Tsuruo. 1993. Role of aminopeptidase N (CD13) in tumor‐cell invasion and extracellular matrix degradation. International journal of cancer. 54:137-143. Schwartz, A.L., and A. Ciechanover. 1999. The ubiquitin-proteasome pathway and pathogenesis of human diseases. Annual review of medicine. 50:57-74. Seelinger, G., I. Merfort, U. Wölfle, and C.M. Schempp. 2008a. Anti-carcinogenic effects of the flavonoid luteolin. Molecules. 13:2628-2651. Semenza, G.L. 2001. Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends in molecular medicine. 7:345-350. Stylli, S.S., A.H. Kaye, and P. Lock. 2008. Invadopodia: at the cutting edge of tumour invasion. Journal of Clinical Neuroscience. 15:725-737. Suh, Y., F. Afaq, J.J. Johnson, and H. Mukhtar. 2009. A plant flavonoid fisetin induces apoptosis in colon cancer cells by inhibition of COX2 and Wnt/EGFR/NF-κB-signaling pathways. Carcinogenesis. 30:300-307. Tedesco, D., J. Zhang, L. Trinh, G. Lalehzadeh, R. Meisner, K.D. Yamaguchi, D.L. Ruderman, H. Dinter, and D.A. Zajchowski. 2007. The ubiquitin-conjugating enzyme E2-EPF is overexpressed in primary breast cancer and modulates sensitivity to topoisomerase II inhibition. Neoplasia. 9:601-613. Triantafyllou, A., I. Mylonis, G. Simos, S. Bonanou, and A. Tsakalof. 2008a. Flavonoids induce HIF-1alpha but impair its nuclear accumulation and activity. Free radical biology & medicine. 44:657-670. Wickliffe, K.E., S. Lorenz, D.E. Wemmer, J. Kuriyan, and M. Rape. 2011a. The mechanism of linkage-specific ubiquitin chain elongation by a single-subunit E2. Cell. 144:769-781. Wu, H., H. Jiang, D. Lu, Y. Xiong, C. Qu, D. Zhou, A. Mahmood, and M. Chopp. 2009a. Effect of simvastatin on glioma cell proliferation, migration, and apoptosis. Neurosurgery. 65:1087-1096; discussion 1096-1087. Wu, H., D. Lu, H. Jiang, Y. Xiong, C. Qu, B. Li, A. Mahmood, D. Zhou, and M. Chopp. 2008. Simvastatin-mediated upregulation of VEGF and BDNF, activation of the PI3K/Akt pathway, and increase of neurogenesis are associated with therapeutic improvement after traumatic brain injury. Journal of neurotrauma. 25:130-139. Wu, Y.-d., and B. Zhou. 2010. TNF-α/NF-κB/Snail pathway in cancer cell migration and invasion. British journal of cancer. 102:639-644. Wu, Y., J. Deng, P.G. Rychahou, S. Qiu, B.M. Evers, and B.P. Zhou. 2009b. Stabilization of snail by NF-κB is required for inflammation-induced cell migration and invasion. Cancer cell. 15:416-428. Xavier, C.P., C.F. Lima, A. Preto, R. Seruca, M. Fernandes-Ferreira, and C. Pereira-Wilson. 2009. Luteolin, quercetin and ursolic acid are potent inhibitors of proliferation and inducers of apoptosis in both KRAS and BRAF mutated human colorectal cancer cells. Cancer letters. 281:162-170. Ye, Y., and M. Rape. 2009. Building ubiquitin chains: E2 enzymes at work. Nature reviews Molecular cell biology. 10:755-764. Zhang, J., H.S. Park, J.A. Kim, G.E. Hong, A. Nagappan, K.I. Park, and G.S. Kim. 2014a. Flavonoids identified from Korean Scutellaria baicalensis induce apoptosis by ROS generation and caspase activation on human fibrosarcoma cells. The American journal of Chinese medicine. 42:465-483. Zhang, J., Y. Wu, X. Zhao, F. Luo, X. Li, H. Zhu, C. Sun, and K. Chen. 2014b. Chemopreventive effect of flavonoids from Ougan (Citrus reticulata cv. Suavissima) fruit against cancer cell proliferation and migration. Journal of Functional Foods. 10:511-519. Zhou, F., L. Qu, K. Lv, H. Chen, J. Liu, X. Liu, Y. Li, and X. Sun. 2011. Luteolin protects against reactive oxygen species-mediated cell death induced by zinc toxicity via the PI3K-Akt-NF-kappaB-ERK-dependent pathway. Journal of neuroscience research. 89:1859-1868. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19250 | - |
| dc.description.abstract | 癌細胞的轉移是導致人類死亡主要原因之一。當癌細胞開始轉移,他們會分泌基質金屬蛋白(MMPs)及促進皮質-間葉細胞型態轉變(EMT)。在EMT的過程中,會誘導轉錄因子的表現,像是Snail及Twist,而這些與癌細胞的轉移是有關連性的。我們先前的研究顯示攝取木犀草素(Luteolin)與槲皮素(Quercetin)可藉由逆轉皮質-間葉細胞型態轉[epithelial-mesenchymal transision (EMT)]來抑制高入侵能力的癌細胞的轉移。然而木犀草素與槲皮素如何調控癌細胞的轉移仍然是未知的。本研究主要探討癌細胞可經由UBE2S透過EMT來增強轉移能力,而這過程可經由木犀草素與槲皮素來進行抑制。
先前實驗室已取得高侵入性的子宮頸癌上皮皮膚癌細胞A431-III,此細胞能大量表現MMP-9及比母代有較佳轉移能。我們發現較高入侵能力的A431第三代細胞(A431-III)會比A431母代細胞(A431-P)明顯較高的UBE2S表現量。經由UBE2S siRNA阻斷UBE2S的表現,及大量表現UBE2S實驗中,顯示UBE2S能藉由EMT來增加細胞的入侵及移動能力。處理木犀草素與槲皮素後可以明顯抑制UBE2S的表現量。抑制A431-III的UBE2S表現及A431-P大量表現UBE2S的實驗中,也顯示了能負調控VHL的表現,而與Hif-1α的表現呈正相關。 UBE2S泛素載體蛋白是為E2泛素連接酶,可經由連結蛋白質後,進入蛋白酶體進行降解,近年來被報導與癌細胞的形成及進展有相關性。而在此篇研究中,我們發現在惡性腫瘤中大量表現UBE2S藉由誘導EMT的發生促進癌細胞的移動及入侵能力。同時,我們數據亦證實,UBE2S能促進IκB的降解及活化NF-κB的路徑,進而影響Snail的表現及促進EMT的發生。 木犀草素與槲皮素可以抑制這反應。在子宮頸癌細胞中顯示UBE2S與VHL及Hif-1α的表現有相關性。這些結果顯示UBE2S能幫助子宮頸癌細胞的活動能力,並可經由木犀草素與槲皮素來抑制子宮頸癌細胞的轉移。我們的實驗結果進一步證實UBE2S可作為腫瘤細胞轉移治療的標的。 | zh_TW |
| dc.description.abstract | Cancer metastasis is the main cause of human death. When cancer cells start to migrate, they could secret matrix metalloproteinases (MMPs) and promote EMT process. Expression of the transcription factors such as Snail and Twist was enhanced during EMT, and this correlates with cancer metastasis. We have previously reported that the dietary flavonoids luteolin and quercetin might inhibit the invasiveness of highly invasive cervical cancer by reversing EMT signaling. However, the regulatory mechanism of luteolin and quercetin on cell invasiveness is still unclear. The present study demonstrates that luteolin and quercetin inhibits EMT signaling and thereby cancer cell invasion through UBE2S.
We previously prepared a highly invasive A431-III cell line, which expression a high level of MMP-9 and exhibit high migration ability than the parent line A431-P. Here, we found that UBE2S expression was significantly higher in highly invasive A431-III cells than A431-P cells. The UBE2S siRNA knockdown and overexpression experiments show that UBE2S increased the migration and invasion ability of cancer cells through EMT signaling. Dietary flavonoids luteolin and quercetin could significantly inhibit UBE2S expression. Knockdown and overexpression of UBE2S in A431-III and A431-P cells show negative correlation with VHL expression and positive correlation of Hif-1α expression. The UBE2S ubiquitin carrier protein is an E2 ubiquitination ligase that helps the E1, E2 and E3 ligases link ubiquitin with target proteins, which then targets protein towards proteasome degradation, is implicated in cancer cell formation and progression. Our findings suggest that high UBE2S expression in malignant cancers contributes to cell motility and invasion ability through EMT signaling. The findings are also suggestive that UBE2S triggers the degradation of IκB and activation of NF-κB pathway, resulting in the subsequent induction of Snail expression and promotion of EMT in A431-III cells. Luteolin and quercetin could offset this effect. UBE2S show correlation with expression of VHL and Hif-1α in cervical cancer cells. These results show the metastatic inhibition of cervical cancer by the flavonoids luteolin and quercetin and provide a functional role of UBE2S in cell motility of cervical cancer. These results support UBE2S could be a potential therapeutic target in cervical cancer. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T01:50:36Z (GMT). No. of bitstreams: 1 ntu-105-D00b46017-1.pdf: 3679377 bytes, checksum: 31a8205310594d9ea70c85ba5f95dc3b (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 中文摘要(i)
Abstract(iii) Content(v) List of figures(vii) Introduction(1) Metastasis of cancer cell(1) Matrix metalloproteinase(3) Flavonoids(4) UBE2S ubiquitin carrier protein(5) NF-κB signaling and cancer metastasis(6) Purpose and importance(9) Materials and Methods(11) Materials(11) Cell culture(12) Detection and characterization of MMPs by gelatin zymography(12) In vitro invasion assays of highly invasive A431-P & III tumor cells(13) In vitro wound-healing migration assay(14) Cell viability assay(14) Immunofluorescence(15) Preparation of cell lysates(16) Immunoprecipitation(16) Western blot(17) UBE2S cDNA construction(17) UBE2S cDNA transfection(18) Transfection of small interference RNA (siRNA)(18) Quantitative Real Time PCR(19) Statistical analysis(20) Results(21) UBE2S highly expressed in A431-III than A431-P cells (21) Effects of UBE2S on cell migration and invasion in A431-P and A431-III cells(22) UBE2S promotes the cell motility of cancer cells through EMT signaling and MMP-9 expression(23) The effect of UBE2S expression on Hif-1α/pVHL signaling(24) Involvement of E2-EPF in the regulation of mTOR expression(25) Luteolin and quercetin inhibited UBE2S expression (27) Inhibitory effects of flavonoids on hypoxia signaling in A431-III cells(28) Effect of UBE2S-mediated increased of NF-κB signaling on IκBα degradation(29) Discussion(43) References(50) Appendix(55) | |
| dc.language.iso | en | |
| dc.title | 木犀草素與槲皮素調控UBE2S表現對高入侵性A431
子代癌細胞轉移及入侵能力之探討 | zh_TW |
| dc.title | Two flavonoids luteolin and quercetin inhibited highly invasive A431-III sub-line tumor cells migration and invasion by regulating UBE2S | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 鄭嘉雄(Chia-Hsiung Cheng) | |
| dc.contributor.oralexamcommittee | 陳宏文(Hungwen Chen),黃銓珍(Chang-Jen Huang),張震東(Geen-Dong Chang) | |
| dc.subject.keyword | 類黃鹼素,木犀草素,槲皮素,UBE2S,Hif-1α,VHL,EMT,子宮頸癌細胞,NF-κB, | zh_TW |
| dc.subject.keyword | flavonoids,luteolin,quercetin,UBE2S,Hif-1α,VHL,EMT,NF-κB, | en |
| dc.relation.page | 61 | |
| dc.identifier.doi | 10.6342/NTU201601321 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2016-07-27 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 3.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
