請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19245
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 邱奕鵬(Yih-Peng Chiou) | |
dc.contributor.author | Su-Yun Fang | en |
dc.contributor.author | 方姝勻 | zh_TW |
dc.date.accessioned | 2021-06-08T01:50:24Z | - |
dc.date.copyright | 2016-08-02 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-07-27 | |
dc.identifier.citation | [1] R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philosophical Magazine Series 6, vol. 4, pp. 396-402, Jun. 1902.
[2] A. H. a. A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Applied Optics, vol. 4, pp. 1275-1297, Oct. 1965. [3] M. Neviere, R. Petit, and M. Cadilhac, “About the theory of optical grating coupler-waveguide systems,” Optics Communications, vol. 8, pp. 113-117, Jun. 1973. [4] M. Neviere, P. Vincent, R. Petit, and M. Cadilhac, “Systematic study of resonances of holographic thin film couplers,” Optics Communications, vol. 9, pp. 48-53, Sep. 1973. [5] M. Gale, “Diffraction, beauty and commerce,” Physics World, pp. 24–29, Oct. 1989. [6] S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Applied Optics, vol. 32, pp. 2606-2613, May 10 1993. [7] S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, “Guided-mode resonances in planar dielectric-layer diffraction gratings,” Journal of the Optical Society of America A-Optics Image Science and Vision, vol. 7, pp. 1470-1474, Aug. 1990. [8] D. K. Jacob, S. C. Dunn, and M. G. Moharam, “Normally incident resonant grating reflection filters for efficient narrow-band spectral filtering of finite beams,” Journal of the Optical Society of America A-Optics Image Science and Vision, vol. 18, pp. 2109-2120, Sep. 2001. [9] D. K. Jacob, S. C. Dunn, and M. G. Moharam, “Design considerations for narrow-band dielectric resonant grating reflection filters of finite length,” Journal of the Optical Society of America A-Optics Image Science and Vision, vol. 17, pp. 1241-1249, Jul. 2000. [10] Z. S. Liu and R. Magnusson, “Concept of multiorder multimode resonant optical filters,” IEEE Photonics Technology Letters, vol. 14, pp. 1091-1093, Aug. 2002. [11] A. Greenwell, S. Boonruang, and M. G. Moharam, “Control of resonance separation over a wide spectral range in multiwavelength resonant grating filters,” Applied Optics, vol. 46, pp. 6355-6361, Sep. 2007. [12] C. F. R. Mateus, M. C. Y. Huang, Y. F. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technology Letters, vol. 16, pp. 518-520, Feb. 2004. [13] C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12-1.62 μm) using a subwavelength grating,” IEEE Photonics Technology Letters, vol. 16, pp. 1676-1678, Jul. 2004. [14] Y. Zhou, M. C. Y. Huang, and C. J. Chang-Hasnain, “Large fabrication tolerance for VCSELs using high-contrast grating,” IEEE Photonics Technology Letters, vol. 20, pp. 434-436, Mar./Apr. 2008. [15] J. Kim, D.-U. Kim, J. Lee, H. Jeon, Y. Park, and Y. S. Choi, “AlGaN membrane grating reflector,” Applied Physics Letters, vol. 95, pp. 021102-021104, Jul. 2009. [16] X. Gu, A. Imamura, and F. Koyama, “Wavelength trimming of vertical-cavity surface-emitting lasers with high-contrast subwavelength grating,” Japanese Journal of Applied Physics, vol. 50, p. 100207, Oct. 2011. [17] Y. Zhou, V. Karagodsky, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “A novel ultra-low loss hollow-core waveguide using subwavelength high-contrast gratings,” Optics Express, vol. 17, pp. 1508-1517, Feb. 2009. [18] Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and Its applications in optoelectronic devices,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 15, pp. 1485-1499, Sep./Oct. 2009. [19] V. Karagodsky, F. G. Sedgwick, and C. J. Chang-Hasnain, “Theoretical analysis of subwavelength high contrast grating reflectors,” Optics Express, vol. 18, pp. 16973-16988, Aug. 2010. [20] G. T. Reed, A. P. Knights, Silicon Photonics: An Introduction, Wiley, 2004, pp.38-56. [21] David K. Cheng, Field and wave Electromagnetics, New York: Addison-wesley, 1989. [22] X. C. Tong, Advanced Materials for Integrated Optical Waveguides, Springer, New York, 2014. [23] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. Princeton, NJ: Princeton University Press,2008. [24] C. H. Lai, B. You, J.Y. Lu, T.A. Liu, J.L. Peng, C.K. Sun, and H.C Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Optics Express, Vol. 18, pp.309-322, Dec.2009. [25] M. Kumar, C. Chase, V. Karagodsky, T. Sakaguchi, F. Koyama, C. J. Chang-Hasnain, “Low Birefringence and 2-D Optical Confi nement of Hollow Waveguide With Distributed Bragg Reflector and High-Index-Contrast Grating,” IEEE Photonics Journal, vol. 1, pp135-143, Aug.2009. [26] Y. Yue, L. Zhang, X. Wang, H. Huang, W. Yang, J.Ferrara, V. Karagodsky, C. Chase, M. Tur, C. J. Chang-Hasnain, , and A. E. Willner, “Three-Dimensional Chirped High-Contrast Grating Hollow-Core Waveguide,” IEEE Photonics Journal, vol. 4, pp1372-1380, Oct.2012. [27] Y. Ohtera, H. Hirose, and H. Yamada, “Characteristics of Resonantly-Guided Modes in Microstructured Optical Fibers,” Photonics, pp.432-441, Nov.2014. [28] C. Yeh, F. I. Shimabukuro, The Essence of Dielecrtic Waveguides, Springer, New York, 2008. [29] Y. Ohtera , S. Iijima, and H. Yamada, “Guided-mode resonance in curved grating structure,” Optics Express, Vol. 36, pp.1689-1691, Apr.2011. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19245 | - |
dc.description.abstract | 本論文將以光柵反射器的高反射器特性,將週期性的光柵圍成環狀光柵反射器作為cladding,將其視為一反射面使得電磁波能夠被侷限於由低折射率的空氣所組成的core內,藉由光柵反射器的高反射特性來設計中空介質共振器與中空介質波導。不同於傳統的光纖波導利用全內反射的機制,使得電磁波必須侷限於由高折射率介質所組成的core內,而利用光柵反射器做為cladding能使電磁波侷限在由空氣組成的core中,因此可運用於高功率的傳輸上。在中空共振器的設計上,若把光柵反射器當作一反射面使能量侷限於截面積方向形成共振,因此可視為一正向入射的光柵反射器,並透過調變介質的折射率對比與共振器的半徑大小比較對品質因子的改變。中空介質波導,則可視為一個平行溝槽方向入射的光柵反射器,將提供一個往z方向傳波的波向量,使得能量能侷限於空氣組成的core內,並往z方向上傳播,也將調變介質的折射率對比與波導管的半徑大小比較對衰減係數的改變。 | zh_TW |
dc.description.abstract | In this studies, we show that the new type of hollow core dielectric cavities and waveguides. The structures consist of a circular grating reflector of high index material and low index air-core. Light is confined and guided inside the air-core by the high reflectance of circular grating reflectors that is differences in the traditional optical fiber. We hope to find the possibility to guide wave in low absorption loss medium by properly designing this kind of cavities and waveguides and be applied to high power transmission. We will first try to design he hollow core cavities that can be considered the grating reflectors under normal incidence. Light is reflected and confined at transverse direction by the high index grating reflector. In our simulation, we will change the index contrast of grating reflectors and the radius of air-core to compare the influence of Q factors. In addition to the case of hollow core cavities, we also try to study the waveguides which can be considered the incident waves has an angle between the circular grating reflectors wall. We will also change the index contrast of grating reflectors and the radius of air-core to compare the influence of attenuation constants | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T01:50:24Z (GMT). No. of bitstreams: 1 ntu-105-R03941062-1.pdf: 5895590 bytes, checksum: fcdff19d0109ca155bd26f5fecd72f5b (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vi 表目錄 x 第一章 導論 1 1.1 文獻回顧 1 1.1.1 繞射理論與光柵研究 1 1.1.2 光柵反射器文獻回顧 2 1.1.3 波導類型介紹 8 1.2 研究動機 9 第二章 基本原理 12 2.1 光柵反射器的設計概念 12 2.1.1 正向入射光柵反射器 12 2.1.2 平行溝槽方向入射光柵反射器 16 2.2 圓柱座標系統之介質波導 18 第三章 中空介質共振器 24 3.1 折射率對比1.8/1.0 26 3.2 折射率對比2.0/1.0 29 3.3 折射率對比2.5/1.0 31 第四章 中空介質波導 34 4.1 折射率對比1.5/1.0 36 4.1.1 中空介質波導core半徑0=2.5um 36 4.1.2 中空介質波導core半徑0=3.0um 43 4.1.3 中空介質波導core半徑0=3.5um 49 4.1.4 弧形中空介質波導core半徑0=2.5um 56 4.2 折射率對比2.0/1.0 59 4.2.1 中空介質波導core半徑0=2.5um 59 4.2.2 中空介質波導core半徑0=3.0um 65 4.2.3 中空介質波導core半徑0=3.5um 70 4.3 折射率對比2.5/1.0 75 4.3.1 中空介質波導core半徑0=2.5um 75 4.3.2 中空介質波導core半徑0=3.0um 80 4.3.3 中空介質波導core半徑0=3.5um 85 第五章 結論 91 REFERENCE 92 | |
dc.language.iso | zh-TW | |
dc.title | 以光柵反射器設計中空介質共振器與波導 | zh_TW |
dc.title | Hollow Dielectric Cavities and Waveguides Based on Grating Reflectors | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王子建(Tzyy-Jiann Wang),何旻真(Min-Chen.Ho) | |
dc.subject.keyword | 光柵反射器,中空共振器,中空波導, | zh_TW |
dc.subject.keyword | Grating reflectors,Hollow waveguide,Hollow cavity, | en |
dc.relation.page | 94 | |
dc.identifier.doi | 10.6342/NTU201601339 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2016-07-28 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 5.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。