請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19227完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳敏慧(Min-Huey Chen) | |
| dc.contributor.author | Yi-Yen Tsai | en |
| dc.contributor.author | 蔡燡嚴 | zh_TW |
| dc.date.accessioned | 2021-06-08T01:49:38Z | - |
| dc.date.copyright | 2016-08-26 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-07-29 | |
| dc.identifier.citation | 1 Su, W. F. A. Thermoplastic and thermoset main chain liquid crystal polymers prepared from biphenyl mesogen. Journal of Polymer Science Part A: Polymer Chemistry 31, 3251-3256, doi:10.1002/pola.1993.080311312 (1993).
2 Broer, D. J., Lub, J. & Mol, G. N. Synthesis and photopolymerization of a liquid-crystalline diepoxide. Macromolecules 26, 1244-1247, doi:10.1021/ma00058a007 (1993). 3 Carfagna, C., Amendola, E. & Giamberini, M. Liquid crystalline epoxy based thermosetting polymers. Progress in Polymer Science 22, 1607-1647, doi:http://dx.doi.org/10.1016/S0079-6700(97)00010-5 (1997). 4 Chen, M. H., Chen, C. R., Hsu, S. H., Sun, S. P. & Su, W. F. Low shrinkage light curable nanocomposite for dental restorative material. Dent Mater 22, 138-145, doi:10.1016/j.dental.2005.02.012 (2006). 5 Chen, C.-Y. et al. Low-shrinkage visible-light-curable urethane-modified epoxy acrylate/SiO2 composites as dental restorative materials. Composites Science and Technology 68, 2811-2817, doi:http://dx.doi.org/10.1016/j.compscitech.2008.06.015 (2008). 6 Hsu, S. H. et al. Biphenyl liquid crystalline epoxy resin as a low-shrinkage resin-based dental restorative nanocomposite. Acta Biomater 8, 4151-4161, doi:10.1016/j.actbio.2012.07.030 (2012). 7 Eliades, T., Gioka, C., Zinelis, S., Eliades, G. & Makou, M. Plastic brackets: hardness and associated clinical implications. World J Orthod 5, 62-66 (2004). 8 Feldner, J. C., Sarkar, N. K., Sheridan, J. J. & Lancaster, D. M. In vitro torque-deformation characteristics of orthodontic polycarbonate brackets. American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics 106, 265-272, doi:10.1016/s0889-5406(94)70046-x (1994). 9 Zinelis, S., Eliades, T., Eliades, G., Makou, M. & Silikas, N. Comparative assessment of the roughness, hardness, and wear resistance of aesthetic bracket materials. Dent Mater 21, 890-894, doi:10.1016/j.dental.2005.03.007 (2005). 10 Faltermeier, A., Rosentritt, M., Faltermeier, R. & Müßig, D. Influence of fibre and filler reinforcement of plastic brackets: an in vitro study. The European Journal of Orthodontics 29, 304-309, doi:10.1093/ejo/cjm025 (2007). 11 Arici, S. & Regan, D. Alternatives to ceramic brackets: the tensile bond strengths of two aesthetic brackets compared ex vivo with stainless steel foil-mesh bracket bases. British journal of orthodontics 24, 133-137, doi:10.1093/ortho/24.2.133 (1997). 12 A, B. W. & T, E. Orthodontic materials: Scientific and clinical aspects. American Journal of Orthodontics and Dentofacial Orthopedics 119, 672-673, doi:10.1067/mod.2001.115853 (2001). 13 Guler, A. U., Yilmaz, F., Kulunk, T., Guler, E. & Kurt, S. Effects of different drinks on stainability of resin composite provisional restorative materials. The Journal of prosthetic dentistry 94, 118-124, doi:10.1016/j.prosdent.2005.05.004 (2005). 14 Ali, O., Makou, M., Papadopoulos, T. & Eliades, G. Laboratory evaluation of modern plastic brackets. The European Journal of Orthodontics 34, 595-602, doi:10.1093/ejo/cjr063 (2012). 15 Subramaniam, S., Fang, Y. H., Sivasubramanian, S., Lin, F. H. & Lin, C. P. Hydroxyapatite-calcium sulfate-hyaluronic acid composite encapsulated with collagenase as bone substitute for alveolar bone regeneration. Biomaterials 74, 99-108, doi:10.1016/j.biomaterials.2015.09.044 (2016). 16 Souza, P. P., Aranha, A. M., Hebling, J., Giro, E. M. & Costa, C. A. In vitro cytotoxicity and in vivo biocompatibility of contemporary resin-modified glass-ionomer cements. Dent Mater 22, 838-844, doi:10.1016/j.dental.2005.10.002 (2006). 17 Liu, X., Lin, J. & Ding, P. Changes in the surface roughness and friction coefficient of orthodontic bracket slots before and after treatment. Scanning 35, 265-272, doi:10.1002/sca.21060 (2013). 18 Bowen, R. L. Compatibility of various materials with oral tissues. I: The components in composite restorations. Journal of dental research 58, 1493-1503 (1979). 19 Stanley, H. R., Bowen, R. L. & Folio, J. Compatibility of various materials with oral tissues. II: Pulp responses to composite ingredients. Journal of dental research 58, 1507-1517 (1979). 20 Hensten-Pettersen, A. & Helgeland, K. Sensitivity of different human cell line in the biologic evaluation of dental resin-based restorative materials. Scandinavian journal of dental research 89, 102-107 (1981). 21 Olsson, B., Sliwkowski, A. & Langeland, K. Subcutaneous implantation for the biological evaluation of endodontic materials. J Endod 7, 355-367, doi:10.1016/s0099-2399(81)80057-x (1981). 22 Blumstein, A., Sivaramakrishnan, K. N., Blumstein, R. B. & Clough, S. B. Synthesis and properties of some polyesters with mesogenic groups and flexible spacers in the main chain. Polymer 23, 47-53, doi:http://dx.doi.org/10.1016/0032-3861(82)90013-1 (1982). 23 Asrar, J. et al. Thermotropic homopolyesters. I. The preparation and properties of polymers based on 4,4′-dihydroxybiphenyl. Journal of Polymer Science: Polymer Physics Edition 21, 1119-1131, doi:10.1002/pol.1983.180210712 (1983). 24 Feilzer, A. J., De Gee, A. J. & Davidson, C. L. Curing contraction of composites and glass-ionomer cements. The Journal of prosthetic dentistry 59, 297-300 (1988). 25 Walls, A. W. G., McCabe, J. F. & Murray, J. J. The polymerization contraction of visible-light activated composite resins. Journal of Dentistry 16, 177-181, doi:http://dx.doi.org/10.1016/0300-5712(88)90032-2 (1988). 26 Drescher, D., Bourauel, C. & Schumacher, H. A. Frictional forces between bracket and arch wire. American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics 96, 397-404 (1989). 27 Ochi, M., Yamashita, K., Yoshizumi, M. & Shimbo, M. Internal stress in epoxide resin networks containing biphenyl structure. Journal of Applied Polymer Science 38, 789-799, doi:10.1002/app.1989.070380502 (1989). 28 Hanks, C. T., Strawn, S. E., Wataha, J. C. & Craig, R. G. Cytotoxic effects of resin components on cultured mammalian fibroblasts. Journal of dental research 70, 1450-1455 (1991). 29 Barclay, G. G. & Ober, C. K. Liquid crystalline and rigid-rod networks. Progress in Polymer Science 18, 899-945, doi:http://dx.doi.org/10.1016/0079-6700(93)90021-4 (1993). 30 Mount, G. J. Clinical placement of modern glass-ionomer cements. Quintessence international 24, 99-107 (1993). 31 Erickson, R. L. & Glasspoole, E. A. Bonding to Tooth Structure: A Comparison of Glass-Ionomer and Composite-Resin Systems. Journal of Esthetic and Restorative Dentistry 6, 227-244, doi:10.1111/j.1708-8240.1994.tb00864.x (1994). 32 Tselepis, M., Brockhurst, P. & West, V. C. The dynamic frictional resistance between orthodontic brackets and arch wires. American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics 106, 131-138 (1994). 33 Ochi, M., Tsuyuno, N., Sakaga, K., Nakanishi, Y. & Murata, Y. Effect of network structure on thermal and mechanical properties of biphenol-type epoxy resins cured with phenols. Journal of Applied Polymer Science 56, 1161-1167, doi:10.1002/app.1995.070560916 (1995). 34 Ratanasathien, S., Wataha, J. C., Hanks, C. T. & Dennison, J. B. Cytotoxic interactive effects of dentin bonding components on mouse fibroblasts. Journal of dental research 74, 1602-1606 (1995). 35 Bouillaguet, S., Wataha, J. C., Hanks, C. T., Ciucchi, B. & Holz, J. In vitro cytotoxicity and dentin permeability of HEMA. Journal of Endodontics 22, 244-248, doi:http://dx.doi.org/10.1016/S0099-2399(06)80141-X (1996). 36 Oliva, A. et al. Biocompatibility studies on glass ionomer cements by primary cultures of human osteoblasts. Biomaterials 17, 1351-1356 (1996). 37 Marshall, G. W., Jr., Marshall, S. J., Kinney, J. H. & Balooch, M. The dentin substrate: structure and properties related to bonding. J Dent 25, 441-458 (1997). 38 Bourauel, C., Fries, T., Drescher, D. & Plietsch, R. Surface roughness of orthodontic wires via atomic force microscopy, laser specular reflectance, and profilometry. Eur J Orthod 20, 79-92 (1998). 39 Chung, K., Lin, T. & Wang, F. Flexural strength of a provisional resin material with fibre addition. Journal of Oral Rehabilitation 25, 214-217 (1998). 40 Geurtsen, W. Substances released from dental resin composites and glass ionomer cements. European Journal of Oral Sciences 106, 687-695, doi:10.1046/j.0909-8836.1998.eos10602ii04.x (1998). 41 Leyhausen, G., Abtahi, M., Karbakhsch, M., Sapotnick, A. & Geurtsen, W. Biocompatibility of various light-curing and one conventional glass-ionomer cement. Biomaterials 19, 559-564, doi:http://dx.doi.org/10.1016/S0142-9612(97)00137-3 (1998). 42 Costa, C. A., Vaerten, M. A., Edwards, C. A. & Hanks, C. T. Cytotoxic effects of current dental adhesive systems on immortalized odontoblast cell line MDPC-23. Dent Mater 15, 434-441 (1999). 43 Srivastava, V. K. Influence of water immersion on mechanical properties of quasi-isotropic glass fibre reinforced epoxy vinylester resin composites. Materials Science and Engineering: A 263, 56-63, doi:http://dx.doi.org/10.1016/S0921-5093(98)01037-5 (1999). 44 Stanislawski, L., Daniau, X., Lauti, A. & Goldberg, M. Factors responsible for pulp cell cytotoxicity induced by resin-modified glass ionomer cements. Journal of biomedical materials research 48, 277-288 (1999). 45 Costa, C. A., Teixeira, H. M., do Nascimento, A. B. & Hebling, J. Biocompatibility of two current adhesive resins. J Endod 26, 512-516 (2000). 46 Suzuki, K., Ishikawa, K., Sugiyama, K., Furuta, H. & Nishimura, F. Content and release of bisphenol A from polycarbonate dental products. Dental materials journal 19, 389-395 (2000). 47 Tilbrook, D. A., Clarke, R. L., Howle, N. E. & Braden, M. Photocurable epoxy-polyol matrices for use in dental composites I. Biomaterials 21, 1743-1753 (2000). 48 Moszner, N. & Salz, U. New developments of polymeric dental composites. Progress in Polymer Science 26, 535-576, doi:http://dx.doi.org/10.1016/S0079-6700(01)00005-3 (2001). 49 David, V. A., Staley, R. N., Bigelow, H. F. & Jakobsen, J. R. Remnant amount and cleanup for 3 adhesives after debracketing. American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics 121, 291-296 (2002). 50 Attar, N., Tam, L. E. & McComb, D. Flow, strength, stiffness and radiopacity of flowable resin composites. J Can Dent Assoc 69, 516-521 (2003). 51 de Souza Costa, C. A., Hebling, J., Garcia-Godoy, F. & Hanks, C. T. In vitro cytotoxicity of five glass-ionomer cements. Biomaterials 24, 3853-3858 (2003). 52 Que, W., Hu, X. & Zhang, Q. Y. Preparation and optical properties of patternable TiO2/ormosils hybrid films for photonics applications. Chemical Physics Letters 369, 354-360, doi:http://dx.doi.org/10.1016/S0009-2614(02)02027-4 (2003). 53 Clocheret, K., Willems, G., Carels, C. & Celis, J. P. Dynamic frictional behaviour of orthodontic archwires and brackets. Eur J Orthod 26, 163-170 (2004). 54 Liu, J. K., Chuang, S. F., Chang, C. Y. & Pan, Y. J. Comparison of initial shear bond strengths of plastic and metal brackets. Eur J Orthod 26, 531-534 (2004). 55 Chimenti, C., Franchi, L., Di Giuseppe, M. G. & Lucci, M. Friction of orthodontic elastomeric ligatures with different dimensions. The Angle orthodontist 75, 421-425, doi:10.1043/0003-3219(2005)75[421:fooelw]2.0.co;2 (2005). 56 Eliades, T., Eliades, G., Silikas, N. & Watts, D. C. In vitro degradation of polyurethane orthodontic elastomeric modules. J Oral Rehabil 32, 72-77, doi:10.1111/j.1365-2842.2004.01366.x (2005). 57 Kusy, R. P. & Whitley, J. Q. Degradation of plastic polyoxymethylene brackets and the subsequent release of toxic formaldehyde. American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics 127, 420-427, doi:10.1016/j.ajodo.2004.01.023 (2005). 58 Cozza, P., Martucci, L., De Toffol, L. & Penco, S. I. Shear bond strength of metal brackets on enamel. The Angle orthodontist 76, 851-856, doi:10.1043/0003-3219(2006)076[0851:sbsomb]2.0.co;2 (2006). 59 Harada, M., Watanabe, Y., Tanaka, Y. & Ochi, M. Thermal properties and fracture toughness of a liquid-crystalline epoxy resin cured with an aromatic diamine crosslinker having a mesogenic group. Journal of Polymer Science Part B: Polymer Physics 44, 2486-2494, doi:10.1002/polb.20916 (2006). 60 Atai, M., Ahmadi, M., Babanzadeh, S. & Watts, D. C. Synthesis, characterization, shrinkage and curing kinetics of a new low-shrinkage urethane dimethacrylate monomer for dental applications. Dent Mater 23, 1030-1041, doi:10.1016/j.dental.2007.03.004 (2007). 61 Ghaemy, M., Bekhradnia, S. & Heidaripour, M. Synthesis, characterization, and curing of a new acrylate-based dental restorative resin. Journal of Applied Polymer Science 110, 983-987, doi:10.1002/app.28683 (2008). 62 Huang, T. H. et al. Orthodontic adhesives induce human gingival fibroblast toxicity and inflammation. Angle Orthodontist 78, 510-516, doi:10.2319/053007-259.1 (2008). 63 Rosu, D., Cascaval, C. N. & Rosu, L. Synthesis and characterization of some composites with bioactive properties on the basis of vinyl ester resins. E-Polymers (2008). 64 Wang, S., Liang, R., Wang, B. & Zhang, C. Reinforcing polymer composites with epoxide-grafted carbon nanotubes. Nanotechnology 19, 085710, doi:10.1088/0957-4484/19/8/085710 (2008). 65 Xie, C., Wang, Z. Y., He, H. M., Han, Y. & Gu, J. W. Study on the structure and mechanical properties of dental barium glass particles surface modification with silane coupling reagent. Polymer-Plastics Technology and Engineering 47, 858-864, doi:10.1080/03602550802188979 (2008). 66 Alcock, J. P., Barbour, M. E., Sandy, J. R. & Ireland, A. J. Nanoindentation of orthodontic archwires: The effect of decontamination and clinical use on hardness, elastic modulus and surface roughness. Dent Mater 25, 1039-1043, doi:10.1016/j.dental.2009.03.003 (2009). 67 Burrow, S. J. Friction and resistance to sliding in orthodontics: a critical review. American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics 135, 442-447, doi:10.1016/j.ajodo.2008.09.023 (2009). 68 Mija, A. & Cascaval, C. N. Liquid crystalline epoxy thermoset with azomethine mesogen. Polimery 54, 786-789 (2009). 69 Cramer, N. B., Stansbury, J. W. & Bowman, C. N. Recent Advances and Developments in Composite Dental Restorative Materials. Journal of dental research 90, 402-416, doi:10.1177/0022034510381263 (2011). 70 Hsu, S.-H. et al. Synthesis, morphology and physical properties of multi-walled carbon nanotube/biphenyl liquid crystalline epoxy composites. Carbon 50, 896-905, doi:http://dx.doi.org/10.1016/j.carbon.2011.09.051 (2012). 71 Habib, E., Wang, R. L., Wang, Y. Z., Zhu, M. F. & Zhu, X. X. Inorganic Fillers for Dental Resin Composites: Present and Future. Acs Biomaterials-Science & Engineering 2, 1-11, doi:10.1021/acsbiomaterials.5b00401 (2016). 72 Langston, T. The Tensile Behavior of High-Strength Carbon Fibers. Microsc Microanal, 1-4, doi:10.1017/s143192761601134x (2016). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19227 | - |
| dc.description.abstract | 目的:
探討液晶環氧樹脂作為牙科矯正托架之材料配方的可行性。 實驗方法: 以液態環氧樹脂3,4-epoxycyclohexylmethyl-(3,4-epoxy) cyclohexanecarboxylate (ECH),加入定量的液晶環氧樹脂Biphenyl and tetramethyl biphenol epoxy resins (BPs) epoxy resin與硬化劑Hexahydro-4-methylphthalic Anhydride (HMPA)來製備液晶環氧樹脂。製作出不同重量百分濃度的液晶環氧樹脂並比較BPs濃度對於材料性質之影響。機械性質方面藉由硬度測試、表面粗糙度、拉伸強度、抗彎強度來表現BPs樹脂對於整體機械性質的影響;材料的染色性質測試藉由咖啡與可樂浸潤材料來評估;熱穩定性方面藉由微熱差掃描與熱重分析法分別量測材料之玻璃轉移溫度與熱裂解溫度;細胞毒性測試是藉由MG-63細胞與材料浸泡之培養液共同培養,以MTT試劑、LDH試劑評估。綜合上述性質,篩選出性質優化最高的液晶環氧樹脂配方,並藉由電腦數位控制雕刻熱聚合之樹脂塊材製作牙科矯正托架。生物相容性則是藉由動物模式評估,將本篇研究製作之液晶環氧樹脂牙科矯正托架植入小鼠模式,以動物模式評估其材料對於生物體所造成的毒性與發炎反應,以此評估材料的生物相容性。 實驗結果: 添加的液晶環氧樹脂可以強化固化後的硬度並降低加工後的粗糙度;另一方面,液晶環氧樹脂對於材料的拉伸強度與抗彎強度方面並無明顯改良,但符合矯正器材料所需要的抗彎強度。在易染色的食物色素染色結果上,液晶環氧樹脂表現良好的抗染色性質;另外,熱分析法DSC與TGA確定了BPs液晶環氧樹脂材料在口腔環境與室溫之下是穩定而不會產生變形的。細胞毒性方面,液晶環氧樹脂對於細胞並無明顯毒性。動物模式的結果以H&E染色觀察,與市售材料組別比較皆無發現免疫細胞出現,表現良好的生物安全性。綜合上述結論,添加3.03 wt.%的BPs液晶環氧樹脂即可改良環氧樹脂使材料具有更好的機械強度、同時能兼顧生物安全性。 結論: BPs液晶環氧樹脂可改良環氧樹脂(ECH)使材料具有更好的機械強度、同時具有抗染色能力且兼顧生物安全性,本研究中的液晶環氧樹脂BPs03是個具有作為牙科矯正托架的材料之潛力。 | zh_TW |
| dc.description.abstract | Purpose:
The purpose of this study is to evaluate the potential of a new formulation liquid crystalline (LC) epoxy resin as dental bracket material. Methods: The preparation of LC epoxy resin is based on 3,4-epoxycyclohexylmethyl-(3,4-epoxy) cyclohexanecarboxylate (ECH) as major body, biphenyl and tetramethyl biphenol epoxy resins (BPs) as mesogen and hexahydro-4-methylphthalic anhydride (HMPA) as the curing agent. To study the effect of BPs to ECH material properties, prepared BPs epoxy resin in each composition of BPs series. To show the mechanical properties improvement, hardness, surface roughness, tensile strength and flexural strength were studied and measured. The stainability was performed by using coffee and cola as staining solutions to evaluate the color difference of BPs epoxy resin and commercial product. The thermal stability was determined by Tg and Td using DSC and TGA analysis. The cytotoxicity was conducted by MG-63 cells with extracts of BPs using MTT and LDH tests. Determined the optimal formulation of BPs and fabricated the BPs orthodontic bracket using the computer numerical control (CNC) 3D milling machine. Results: The hardness and roughness are improved by adding BPs; BPs has no effect on both tensile and flexural strength properties. Also, BPs epoxy resin showed a good stainability that won’t be stained by coffee and cola. The thermal stability tests showed BPs epoxy resins were safe and stable when using in oral environment and room temperature. BPs showed no significant cytotoxicity to MG-63 cell, and histological analysis of mouse model showed BPs with a good biocompatibility. To sum up, adding 3.03% LC epoxy resin (BPs) to ECH has improved the mechanical properties of epoxy resin and also showed a good biosafety. LC epoxy resin BPs03 in this study is a novel material that has the potential using in dental bracket. Conclusion: By incorporating BPs with ECH, the results showed a greatly improvement on mechanical properties and showed good stainability and biocompatibility. BPs03 in this study is a novel material that has the potential using in orthodontic bracket. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T01:49:38Z (GMT). No. of bitstreams: 1 ntu-105-R03450008-1.pdf: 2834185 bytes, checksum: ace234adf7d3e81ea56a2f6f7337f6f1 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 iii ABSTRACT v CONTENTS vii LIST OF FIGURES x LIST OF TABLES xi Chapter 1 Introduction 1 1.1 Biphenyl liquid crystalline epoxy resins 1 1.2 Plastic orthodontic brackets 2 Chapter 2 Hypothesis and specific aims 4 2.1 Hypothesis 4 2.2 Motivation 4 2.3 Purpose and specific aims 5 Chapter 3 Materials and Methods 6 3.1 Experimental design flow chart 6 3.2 Materials 7 3.2.1 Chemical reagents 7 3.2.2 Instruments 8 3.3 Methods 8 3.3.1 Preparation of liquid crystalline epoxy resin 8 3.3.2 SEM morphological surface analysis 9 3.3.3 Measurement of surface profile 9 3.3.4 Microhardness test 9 3.3.5 Stainability test 10 3.3.6 Tensile strength test 10 3.3.7 Three-point bending test 11 3.3.8 Differential scanning calorimetry (DSC) analysis 11 3.3.9 Thermogravimetric analysis (TGA) 12 3.3.10 Fabrication of LC orthodontic bracket 12 3.3.11 Cytotoxicity and cell culture 13 3.3.12 Implantation into subcutaneous connective tissue 13 3.3.13 Histological analysis 14 3.3.14 Statistic analysis 15 Chapter 4 Results 16 4.1 Characterization of liquid crystalline epoxy composite resin 16 4.1.1 Mechanical properties of cured liquid crystalline epoxy resin 16 4.1.2 The thermal stability of cured liquid crystalline epoxy resin 17 4.2 Morphology and microstructure of cured liquid crystalline epoxy composite resin 17 4.3 The stainability of cured liquid crystalline epoxy composite resin 18 4.4 Cytotoxicity of cured liquid crystalline epoxy composite resin 18 4.5 Histological analysis 19 Chapter 5 Discussion 20 5.1 Mechanical properties of cured liquid crystalline epoxy composite resin 20 5.2 Thermal stability of cured liquid crystalline epoxy composite resin 21 5.3 The stainability of cured liquid crystalline epoxy composite resin 22 5.4 Cytotoxicity of cured liquid crystalline epoxy composite resin 22 5.5 Histological analysis 23 Chapter 6 Conclusion 24 Chapter 7 Future work 25 Chapter 8 Figures and Tables 26 REFERENCE 45 | |
| dc.language.iso | en | |
| dc.title | 液晶環氧樹脂應用於牙科矯正托架 | zh_TW |
| dc.title | Liquid Crystalline Epoxy Resin for Orthodontic Brackets | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林唯芳(Wei-Fang Su),陳羿貞(Yi-Jane Chen) | |
| dc.subject.keyword | 液晶環氧樹脂,矯正托架,電腦數位控制雕刻,掃描式電子顯微鏡,硬度,拉伸,微熱差掃描分析,熱重分析,抗彎,細胞毒性,動物模式, | zh_TW |
| dc.subject.keyword | liquid crystalline epoxy resin,dental bracket,computer numerical control 3D milling machine,SEM,hardness,tensile,flexural,DSC,TGA,cytotoxicity,animal model, | en |
| dc.relation.page | 49 | |
| dc.identifier.doi | 10.6342/NTU201601617 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2016-07-29 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 口腔生物科學研究所 | zh_TW |
| 顯示於系所單位: | 口腔生物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 2.77 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
